Inhibition of lncRNA RET enhances radio-sensitivity of tumor cells via miR-3179/Slug/PTEN axis

Author:

Liang Xinxin12,Li Xueping23,Wang Ping2,Chen Zhongmin4,Yan Ziyan2,Ao Xingkun12,Liu Yuhao2,Zhu Jiaojiao2,Xi Tingting2,Zhou Shenghui12,Li Zhongqiu25,Li Chao23,Zhu Maoxiang2,Zhou Ping-Kun2,Gu Yongqing1235ORCID

Affiliation:

1. Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China

2. Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, Beijing 100850, China

3. School of Life Science, Shihezi University, Shihezi, Xinjiang 832003, China

4. PLA Rocket Force Characteristic Medical Center, Beijing 100088, China

5. Medical School, Shihezi University, Shihezi, Xinjiang 832003, China

Abstract

Abstract Radioresistance is one of the key obstacles that may lead to the failure of cancer treatment. The underlying mechanisms of radioresistance remain largely unknown; however, increasing evidence has shown that long noncoding RNAs (lncRNAs) are involved in radiotherapy resistance of several cancers. In the present study, we demonstrated that radiation-elevated transcript (RET), a newly identified lnRNA, was highly expressed in cancer cells. Knockdown of RET significantly inhibited the proliferation and colony formation of cancer cells and markedly inhibited apoptosis. Furthermore, downregulation of RET in cancer cells significantly inhibited cell growth, decreased colony survival fractions, and promoted apoptosis in response to radiation treatment, indicating a role in radiation resistance. Moreover, RET knockdown significantly increased the expression of γ-H2AX, an indicator of DNA double strand damage, and reversed radiation-induced EMT, both of which contributed to its radiation resistance. In addition, a negative correlation was found between the expression of RET and PTEN. Rescue assays confirmed RET knockdown enhanced radiosensitivity of cancer cells by upregulating the expression of PTEN. Mechanistically, RET positively regulated Slug, a repressor of PTEN transcription, by acting as a molecular sponge of miR-3179. Our present study showed that RET conferred radioresistance by regulating miR-3179/Slug/PTEN axis, indicating that RET may be a potential target for the clinical application in cancer patients with radioresistance.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Health, Toxicology and Mutagenesis,Toxicology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3