Developmental neurotoxicity (DNT) QSAR combination prediction model establishment and structural characteristics interpretation

Author:

Zhang Lu1,Li Min1,Zhang Dalong1,Zhang Shujing1,Zhang Li1,Wang Xiaojun1,Qian Zhiyong1

Affiliation:

1. Department of Toxicology, Tianjin Centers for Disease Control and Prevention , Tianjin 300011 , China

Abstract

Abstract With the incidence of neurodevelopmental disorders on the rise, it is imperative to screen and evaluate developmental neurotoxicity (DNT) compounds from a large number of environmental chemicals and understand their mechanisms. In this study, DNT qualitative structure-activity relationship (QSAR) study was carried out for the first time based on DNT data of mammals and structural characterization of DNT compounds was preliminarily illustrated. Five different classification algorithms and two feature selection methods were used to construct prediction models. The best model had good predictive ability on the external test set, but a small application domain (AD). Through combining of three different models, both MCC and AD values were improved. Furthermore, electronical properties, van der Waals volume-related properties and S, Cl or P containing substructure were found to be associated with DNT through modeling descriptors analysis and structure alerts (SAs) identification. This study lays a foundation for further DNT prediction of environmental exposures in human and contributes to the understanding of DNT mechanism.

Funder

Tianjin Health Research Project

Publisher

Oxford University Press (OUP)

Subject

Health, Toxicology and Mutagenesis,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3