Nitroglycerin-induced downregulation of AKT- and ERK1/2-mediated radiation-sensitive 52 expression to enhance pemetrexed-induced cytotoxicity in human lung cancer cells

Author:

Ko Jen-Chung1,Chen Jyh-Cheng2,Tseng Pei-Yu3,Hsieh Jou-Min3,Chiang Chen-Shan3,Liu Li-Ling3,Chien Chin-Cheng3,Huang I-Hsiang3,Lin Yun-Wei3ORCID

Affiliation:

1. Department of Internal Medicine, National Taiwan University Hospital, No. 2, Sec.1, Shengyi Rd., Zhubei City, Hsinchu County 302, Taiwan

2. Department of Food Science, National Chiayi University, No. 300 Syuefu Rd., Chiayi City 600, Taiwan

3. Department of Biochemical Science and Technology, National Chiayi University, No. 300 Syuefu Rd., Chiayi City 600, Taiwan

Abstract

Abstract Nitroglycerin (NTG)—a nitric oxide–donating drug—is traditionally administered via the sublingual route to treat acute myocardial angina attacks. NTG also increases tumor blood flow and, consequently, cancer drug delivery to tumor cells. In the homologous recombination pathway, radiation-sensitive 52 (Rad52) plays a crucial role in DNA repair by promoting the annealing of complementary single-stranded DNA and stimulating radiation-sensitive 51 (Rad51) recombinase activity. Pemetrexed—a multitargeted antifolate agent—exhibits satisfactory clinical activity in wild-type nonsquamous non-small-cell lung cancer (NSCLC) cells. However, the synergistic activity of combination therapy with NTG and pemetrexed against NSCLC cells has not yet been clarified. In 2 NSCLC cell lines (i.e. lung squamous cell carcinoma H520 and lung adenocarcinoma H1975 cells), NTG reduced Rad52 expression; in addition, decreased phospho-AKT and phospho-ERK1/2 protein levels were observed. Enhancement of AKT or ERK1/2 activity through transfection with a constitutively active AKT (AKT-CA) vector or constitutively active mitogen-activated protein kinase kinase 1 (MKK1-CA) vector increased the Rad52 protein level and cell survival, which were suppressed by NTG. The knockdown of Rad52 expression by using small interfering RNA or by inhibiting AKT and ERK1/2 activity enhanced the cytotoxicity and cell growth inhibition induced by NTG. Moreover, NTG synergistically enhanced the cytotoxicity and cell growth inhibition induced by pemetrexed in NSCLC cells; these effects were associated with AKT and ERK1/2 inactivation and, consequently, Rad52 downregulation in H520 and H1975 cells. The results provide a rationale for combining NTG and pemetrexed in lung cancer treatment to improve lung cancer control.

Funder

Ministry of Science and Technology

National Taiwan University Hospital

Publisher

Oxford University Press (OUP)

Subject

Health, Toxicology and Mutagenesis,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3