Affiliation:
1. Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Rd, Xuhui District, Shanghai 200237, China
Abstract
Abstract
Neurotoxicity is one of the main causes of drug withdrawal, and the biological experimental methods of detecting neurotoxic toxicity are time-consuming and laborious. In addition, the existing computational prediction models of neurotoxicity still have some shortcomings. In response to these shortcomings, we collected a large number of data set of neurotoxicity and used PyBioMed molecular descriptors and eight machine learning algorithms to construct regression prediction models of chemical neurotoxicity. Through the cross-validation and test set validation of the models, it was found that the extra-trees regressor model had the best predictive effect on neurotoxicity (${q}_{\mathrm{test}}^2$ = 0.784). In addition, we get the applicability domain of the models by calculating the standard deviation distance and the lever distance of the training set. We also found that some molecular descriptors are closely related to neurotoxicity by calculating the contribution of the molecular descriptors to the models. Considering the accuracy of the regression models, we recommend using the extra-trees regressor model to predict the chemical autonomic neurotoxicity.
Funder
National Natural Science Foundation of China
Publisher
Oxford University Press (OUP)
Subject
Health, Toxicology and Mutagenesis,Toxicology
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献