In silico prediction of chemical neurotoxicity using machine learning

Author:

Jiang Changsheng1,Zhao Piaopiao1,Li Weihua1,Tang Yun1,Liu Guixia1

Affiliation:

1. Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Rd, Xuhui District, Shanghai 200237, China

Abstract

Abstract Neurotoxicity is one of the main causes of drug withdrawal, and the biological experimental methods of detecting neurotoxic toxicity are time-consuming and laborious. In addition, the existing computational prediction models of neurotoxicity still have some shortcomings. In response to these shortcomings, we collected a large number of data set of neurotoxicity and used PyBioMed molecular descriptors and eight machine learning algorithms to construct regression prediction models of chemical neurotoxicity. Through the cross-validation and test set validation of the models, it was found that the extra-trees regressor model had the best predictive effect on neurotoxicity (${q}_{\mathrm{test}}^2$ = 0.784). In addition, we get the applicability domain of the models by calculating the standard deviation distance and the lever distance of the training set. We also found that some molecular descriptors are closely related to neurotoxicity by calculating the contribution of the molecular descriptors to the models. Considering the accuracy of the regression models, we recommend using the extra-trees regressor model to predict the chemical autonomic neurotoxicity.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Health, Toxicology and Mutagenesis,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3