A bioactive component of Portulaca Oleracea L., HM-chromanone, improves palmitate-induced insulin resistance by inhibiting mTOR/S6K1 through activation of the AMPK pathway in L6 skeletal muscle cells

Author:

Park Jae Eun1,Han Ji Sook1ORCID

Affiliation:

1. Department of Food Science and Nutrition, Pusan National University , 2, Busandaehak-ro 63beon-gil, Geumgeong-gu, Busan 46241, Republic of South Korea

Abstract

Abstract Increased free fatty acid levels in the blood are common in obesity and cause insulin resistance associated with type 2 diabetes in the muscles. Previous studies have confirmed the antidiabetic and anti-obesity potential of (E)-5-hydroxy-7-methoxy-3-(2-hydroxybenzyl)-4-chromanone (HM-chromanone). However, it is unknown how HM-chromanone alleviates obesity-related insulin resistance in L6 skeletal muscle cells. Palmitate induced insulin resistance and reduced glucose uptake, whereas HM-chromanone significantly increased glucose uptake. In palmitate-treated L6 skeletal muscle cells, HM-chromanone stimulated liver kinase B1 (LKB1) and 5′-adenosine monophosphate-activated protein kinase (AMPK) phosphorylation. The AMPK inhibitor compound C, and the LKB1 inhibitor radicicol blocked the effects of HM-chromanone. Furthermore, HM-chromanone significantly inhibited mammalian target of rapamycin (mTOR) and ribosomal protein S6 kinase 1 (S6K1) activation, but there was no change in protein kinase C θ (PKC θ) expression. When pAMPK was inhibited with compound C, the effect of HM-chromanone on the inhibition of mTOR and S6K1 was significantly diminished. This indicates that HM-chromanone inhibits mTOR and S6K1 activation through pAMPK activation. Inhibition of mTOR and S6K1 by HM-chromanone significantly reduced IRS-1Ser307 and IRS-1Ser632 phosphorylation, leading to insulin resistance. This resulted in an increase in PM-GLUT4 (glucose transporter 4) expression, thereby stimulating glucose uptake in insulin-resistant muscle cells. HM-chromanone can improve palmitate-induced insulin resistance by inhibiting mTOR and S6K1 through activation of the AMPK pathway in L6 skeletal muscle cells. These results show the therapeutic potential of HM-chromanone for improving insulin resistance in type 2 diabetes.

Funder

National Research Foundation of Korea

Publisher

Oxford University Press (OUP)

Subject

Health, Toxicology and Mutagenesis,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3