Silica exposure activates non-canonical inflammasome complex in intratracheal instilled rat model

Author:

Niu Yingmei1,Yang Shuangli1,Hu Xiumei2

Affiliation:

1. Occupational Disease and Toxicology Department, Beijing Chao-Yang Hospital, Capital Medical University , Beijing 100020, China

2. Department of Pathology, Beijing Chao-Yang Hospital, Capital Medical University , Beijing 100020, China

Abstract

Abstract Background Inhalation of silica crystals in occupational settings is a main cause of silicosis, a chronic irreversible pulmonary disorder. Our prior studies demonstrated the activation of inflammasome sensors AIM2 and NLRP3, effector protein caspase-1, and significant increase in IL-1β in silica exposed rats, suggesting that the canonical inflammasome activation may be associated with silica-induced tissue damage and inflammation. Aims and Methods In our current study using the same animal model system, we further evaluated the components of non-canonical inflammasome, including NEK7, caspase-11, and GSDMD following silica exposure. Results We demonstrated sustained NEK7 elevation in the rat lung epithelial cells and macrophages following 1- and 3-day exposure. Enhanced NEK7 expression was also detected in lung homogenate by western blot. Similarly, caspase-11 expression was induced by silica exposure in lung sections and homogenate. Elevated GSDMD was observed both in lung sections by immunohistochemical staining and in lung tissue homogenate by western blot. Conclusion In summary, our current study demonstrated increase in NEK7, caspase-11, and GSDMD in silica exposed rats, indicating activation of non-canonical inflammasome complex, thereby providing a broad inflammasome activation pathway caused by silica exposure.

Publisher

Oxford University Press (OUP)

Subject

Health, Toxicology and Mutagenesis,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3