Effect of titanium dioxide nanoparticles on DNA methylation of human peripheral blood mononuclear cells

Author:

Malakootian Mohammad1,Nasiri Alireza1,Osornio-Vargas Alvaro R2,Faraji Maryam13

Affiliation:

1. Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran

2. Department of Pediatrics, University of Alberta, 3-591 Edmonton Clinic Health Academy, Edmonton T6G 1C9, Canada

3. Department of Environmental Health Engineering, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran

Abstract

Abstract The aim of the current study was to investigate the effect of well-characterized TiO2 nanoparticles on DNA methylation of peripheral blood mononuclear cells (PBMCs) in vitro. Maximum non-toxic concentration of nanoparticles for PBMCs was determined by MTT assay. The effect of TiO2 nanoparticles at concentrations of 25–100 μg/ml on DNA methylation of PBMCs was investigated by measuring the %5-mC alterations through an ELISA assay. The physicochemical analysis showed that the TiO2 nanoparticles were crystalline, pure and in the anatase phase. Peaks related to Ti-O tensile vibrations were observed in the range of 1510 cm−1. The size of nanoparticles was in the range of 39–74 nm with an average hydrodynamic diameter of 43.82 nm. According to the results of the MTT test, 100 μg/ml was found to be maximum non-toxic concentration. The %5-mC in treated PBMCs revealed that TiO2 nanoparticles could lead to DNA hypomethylation in PBMCs. The %5-mC difference compared with the negative control was found to be 2.07 ± 1.02% (P = 0.03). The difference of %5-mC between the 25 and 100 μg/ml concentration of nanoparticles was statistically significant (P = 0.02). The results of the current study show that the TiO2 nanoparticles cause DNA hypomethylation in PBMCs in a dose-response manner. Therefore, it is recommended to evaluate the effects of cytotoxicity and epigenotoxicity of commonly used nanoparticles before their use.

Funder

Iran National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Health, Toxicology and Mutagenesis,Toxicology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3