Endoplasmic reticulum stress participates in apoptosis of HeLa cells exposed to TPHP and OH-TPHP via the eIF2α-ATF4/ATF3-CHOP-DR5/P53 signaling pathway

Author:

An Jing12,Du Chenyang12,Xue Wanlei12,Huang Jin12,Zhong Yufang12,Ren Guofa12,Shang Yu12,Xu Bingye3

Affiliation:

1. Institute of Environmental Pollution and Health , School of Environmental and Chemical Engineering, , Nanchen Road 333, Shanghai 200444 , PR China

2. Shanghai University , School of Environmental and Chemical Engineering, , Nanchen Road 333, Shanghai 200444 , PR China

3. Zhejiang Ecological and Environmental Monitoring Center, Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control , Xueyuan Road 117, Hangzhou 310012 , PR China

Abstract

Abstract Purpose Triphenyl phosphate (TPHP) is a widely used organophosphate flame retardant, which can be transformed in vivo into diphenyl phosphate (DPHP) and 4-hydroxyphenyl phosphate (diphenyl) ester (OH-TPHP) through biotransformation process. Accumulation of TPHP and its derivatives in biological tissues makes it necessary to investigate their toxicity and molecular mechanism. Methods The present study evaluated the cellular effects of TPHP, DPHP, and OH-TPHP on cell survival, cell membrane damage, oxidative damage, and cell apoptosis using HeLa cells as in vitro model. RNA sequencing and bioinformatics analysis were conducted to monitor the differently expressed genes, and then RT-qPCR and Western bolt were used to identify potential molecular mechanisms and key hub genes. Results Results showed that OH-TPHP had the most significant cytotoxic effect in HeLa cells, followed by TPHP; and no significant cytotoxic effects were observed for DPHP exposure within the experimental concentrations. Biological function enrichment analysis suggested that TPHP and OH-TPHP exposure may induce endoplasmic reticulum stress (ERS) and cell apoptosis. The nodes filtering revealed that ERS and apoptosis related genes were involved in biological effects induced by TPHP and OH-TPHP, which may be mediated through the eukaryotic translation initiation factor 2α/activating transcription factor 4 (ATF4)/ATF3- CCAAT/ enhancer-binding protein homologous protein (CHOP) cascade pathway and death receptor 5 (DR5) /P53 signaling axis. Conclusion Above all, these findings indicated that ERS-mediated apoptosis might be one of potential mechanisms for cytotoxicity of TPHP and OH-TPHP.

Funder

National Natural Science Foundation of China

“Pioneer” and “Leading Goose” R&D Program of Zhejiang

Ecological and Environmental Scientific Research and Achievement Promotion Project of Zhejiang Province

Publisher

Oxford University Press (OUP)

Subject

Health, Toxicology and Mutagenesis,Toxicology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3