Toxicity assessment and DNA repair kinetics in HEK293 cells exposed to environmentally relevant concentrations of Glyphosate (Roundup® Control Max)

Author:

Roma Dardo1,Cecchini Maria Eugenia1,Tonini María Paula1,Capella Virginia2,Aiassa Delia3,Rodriguez Nancy2,Mañas Fernando1

Affiliation:

1. Department of Animal Clinic, National University of Río Cuarto-CONICET , National Route No. 36, 601 Km, Rio Cuarto X5804ZAB , Argentina

2. Department of Molecular Biology, National University of Río Cuarto-CONICET , National Route No. 36, 601 Km, Rio Cuarto X5804ZAB , Argentina

3. Department of Natural Sciences, National University of Río Cuarto , National Route No. 36, 601 Km, Rio Cuarto X5804ZAB , Argentina

Abstract

Abstract Glyphosate is a systemic, non-selective, pre and post-emergence wide range herbicide. In 2015, IARC classified Glyphosate as “a probable carcinogenic agent for humans”. The aim of this study was to evaluate the cytotoxicity and genotoxicity of the commercial formulation of glyphosate (Roundup® Control Max) at environmentally relevant concentrations and measure the potential effect of this herbicide over the cell capacity to repair DNA damage. HEK293 cells were exposed to 5 concentrations of Roundup® Control Max equivalent to 0.7; 7; 70; 700 and 3,500 μg/L glyphosate acid, for 1, 4 and 24 h. Cytotoxicity was quantified by the Trypan Blue staining method and by the MTT assay, while genotoxicity and evaluation of DNA damage repair kinetics were analyzed through the alkaline comet assay. In all treatments, cell viability was higher than 80%. The three highest glyphosate concentrations—70 μg/L, 700 μg/L, and 3,500 μg/L—increased levels of DNA damage compared to the control at the three exposure times tested. Finally, concerning the kinetics of DNA damage repair, cells initially exposed to 3,500 μg/L of glyphosate for 24 h were unable to repair the breaks in DNA strands even after 4 h of incubation in culture medium. The present study demonstrated for the first time that Roundup® Control Max may induce genetic damage and cause alterations in the DNA repair system in human embryonic kidney cells even at concentrations found in blood and breast milk of people exposed through residues of the herbicide in food, which values have been poorly assessed or not studied yet according to the existent literature.

Funder

National University of Río Cuarto

CONICET

Publisher

Oxford University Press (OUP)

Subject

Health, Toxicology and Mutagenesis,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3