Affiliation:
1. Department of Pharmacology and Therapeutics, University of Liverpool , Sherrington Building, Ashton Street, Liverpool, L69 3GE , United Kingdom
2. Tropical Infectious Diseases Unit, Royal Liverpool University Hospital , Prescot Street, Liverpool, L7 8XP , United Kingdom
Abstract
Abstract
Background
β-d-N4-Hydroxycytidine (NHC) is the active metabolite of molnupiravir, a broad-spectrum antiviral approved by the MHRA for COVID-19 treatment. NHC induces lethal mutagenesis of the SARS-CoV-2 virus, undergoing incorporation into the viral genome and arresting viral replication. It has previously been reported that several nucleoside analogues elicit off-target inhibition of mitochondrial DNA (mtDNA) or RNA replication. Although NHC does not exert these effects in HepG2 cells, HepaRG are proven to be advantageous over HepG2 for modelling nucleoside analogue-induced mitochondrial dysfunction. Therefore, the objective of this work was to assess the mitotoxic potential of NHC in HepaRG cells, a model more closely resembling physiological human liver.
Methods
Differentiated HepaRG cells were exposed to 1–60 μM NHC for 3–14 days to investigate effects of sub-, supra-, and clinically-relevant exposures (in the UK, molnupiravir for COVID-19 is indicated for 5 days and reported Cmax is 16 μM). Following drug incubation, cell viability, mtDNA copy number, mitochondrial protein expression, and mitochondrial respiration were assessed.
Results
NHC induced minor decreases in cell viability at clinically relevant exposures, but did not decrease mitochondrial protein expression. The effects on mtDNA were variable, but typically copy number was increased. At supra-clinical concentrations (60 μM), NHC reduced mitochondrial respiration, but did not appear to induce direct electron transport chain dysfunction.
Conclusions
Overall, NHC does not cause direct mitochondrial toxicity in HepaRG cells at clinically relevant concentrations, but may induce minor cellular perturbations. As HepaRG cells have increased physiological relevance, these findings provide additional assurance of the mitochondrial safety profile of NHC.
Funder
Medical Research Council
Discovery Medicine North (DiMeN) Doctoral Training Partnership
Biopredic International
Publisher
Oxford University Press (OUP)