Assessing the mitochondrial safety profile of the molnupiravir active metabolite, β-d-N4-hydroxycytidine (NHC), in the physiologically relevant HepaRG model

Author:

Kiy Robyn T1ORCID,Khoo Saye H12,Chadwick Amy E1ORCID

Affiliation:

1. Department of Pharmacology and Therapeutics, University of Liverpool , Sherrington Building, Ashton Street, Liverpool, L69 3GE , United Kingdom

2. Tropical Infectious Diseases Unit, Royal Liverpool University Hospital , Prescot Street, Liverpool, L7 8XP , United Kingdom

Abstract

Abstract Background β-d-N4-Hydroxycytidine (NHC) is the active metabolite of molnupiravir, a broad-spectrum antiviral approved by the MHRA for COVID-19 treatment. NHC induces lethal mutagenesis of the SARS-CoV-2 virus, undergoing incorporation into the viral genome and arresting viral replication. It has previously been reported that several nucleoside analogues elicit off-target inhibition of mitochondrial DNA (mtDNA) or RNA replication. Although NHC does not exert these effects in HepG2 cells, HepaRG are proven to be advantageous over HepG2 for modelling nucleoside analogue-induced mitochondrial dysfunction. Therefore, the objective of this work was to assess the mitotoxic potential of NHC in HepaRG cells, a model more closely resembling physiological human liver. Methods Differentiated HepaRG cells were exposed to 1–60 μM NHC for 3–14 days to investigate effects of sub-, supra-, and clinically-relevant exposures (in the UK, molnupiravir for COVID-19 is indicated for 5 days and reported Cmax is 16 μM). Following drug incubation, cell viability, mtDNA copy number, mitochondrial protein expression, and mitochondrial respiration were assessed. Results NHC induced minor decreases in cell viability at clinically relevant exposures, but did not decrease mitochondrial protein expression. The effects on mtDNA were variable, but typically copy number was increased. At supra-clinical concentrations (60 μM), NHC reduced mitochondrial respiration, but did not appear to induce direct electron transport chain dysfunction. Conclusions Overall, NHC does not cause direct mitochondrial toxicity in HepaRG cells at clinically relevant concentrations, but may induce minor cellular perturbations. As HepaRG cells have increased physiological relevance, these findings provide additional assurance of the mitochondrial safety profile of NHC.

Funder

Medical Research Council

Discovery Medicine North (DiMeN) Doctoral Training Partnership

Biopredic International

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3