High-fat diet promotes multiple binges-induced liver injury via promoting hepatic macrophage proinflammatory polarization

Author:

Wang Yi-Ran12,Xie Na3,Zhang Yan-Jing12,Wang Lin12,Sun Zhan4,Zeng Tao12

Affiliation:

1. Institute of Toxicology , School of Public Health, Cheeloo College of Medicine, , Jinan, Shandong 250012 , China

2. Shandong University , School of Public Health, Cheeloo College of Medicine, , Jinan, Shandong 250012 , China

3. Department of Gastroenterology, Jining Third People's Hospital , Jining, Shandong 272100 , China

4. Institute of Physical and Chemical Analysis, Jinan Municipal Center for Disease Control and Prevention , Jinan, Shandong 250021 , China

Abstract

Abstract High-fat diet (HFD) and ethanol could synergistically induce liver damage, but the underlying mechanisms remain to be elucidated. M1-polarized macrophages have been demonstrated to be key players in ethanol-induced liver damage. The current study was designed to investigate whether hepatic steatosis could promote ethanol-induced liver injury by promoting liver macrophage M1 polarization. In the in vivo study, 12 weeks of HFD feeding induced a moderate increase in the F4/80 expression and protein levels of p-IKKα/β, p-IκBα, and p-p65, which was suppressed by single binge. In contrast, 8 weeks of HFD and multiple binges (two binges per week during the last 4 weeks) synergistically increased the F4/80 expression, mRNA levels of M1 polarization biomarkers including Ccl2, Tnfa, and Il1b, and protein levels of p65, p-p65, COX2, and Caspase 1. In the in vitro study, a nontoxic free fatty acids (FFAs) mixture (oleic acid/palmitic acid = 2: 1) induced a moderate increase of protein levels of p-p65 and NLRP3 in murine AML12 hepatocytes, which was inhibited by ethanol co-exposure. Ethanol alone induced proinflammatory polarization of murine J774A.1 macrophages evidenced by the enhanced secretion of TNF-α, increased mRNA levels of Ccl2, Tnfa, and Il1b, and upregulated protein levels of p65, p-p65, NLRP3, and Caspase 1, which was augmented by FFAs exposure. Collectively, these results suggest that HFD and multiple binges could synergistically induce liver damage by promoting the proinflammatory activation of macrophages in mice livers.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Health, Toxicology and Mutagenesis,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3