The effect of different tobacco tar levels on DNA damage in cigarette smoking subjects

Author:

Zhao Congcong1,Xie Yuanchen1,Zhou Xiaoshan2,Zhang Qiao1,Wang Na1

Affiliation:

1. College of Public Health, Zhengzhou University, No. 100 Science Avenue, High-tech Zone, Henan 450001, China

2. Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital, Huddinge, Stockholm 141 86, Sweden

Abstract

Abstract Objective To explore the genetic damage caused by different tar levels in the human body. Methods The subjects were divided into high, medium and low (12 mg, 8 mg, 5 mg) tar groups according to the tar levels. Nonsmoking populations served as a control group. 2 ml of peripheral blood was collected on the 10th day after morning fasting. Oxidative and genetic toxicological damage indicators were analysed with enzyme-linked immunosorbent assay, cytokinesis-block micronucleus assay in human lymphocyte and single cell gel electrophoresis. Results The distribution of hOGG1 concentration was significantly different within all groups, P < 0.01. The concentrations of cotinine, 8-OHdG and Rap-2b were significantly differences between control and medium tar group, control and high tar group, low and medium tar group and low and high tar group, respectively, P < 0.05. The level of PAH-DNA adducts was not significantly changed in the middle tar group and high tar group, P > 0.05. The level of CRP was significantly changed between control and high tar group, low and high tar group and medium and high tar group, respectively, P < 0.0001. The rate of comet tailing was significantly different between all groups. The rate of micronucleus cells was not significantly different between all groups. Conclusions The increase of tar content could increase the DNA damage to a certain extent, so the intake of tar content should be monitored.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Health, Toxicology and Mutagenesis,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3