Zoletil promotes apoptosis in BV-2 microglial cells via induction of oxidative stress and neural inflammation

Author:

Kim Gyun Moo1,Lee Chan2,Jang Tae Chang1ORCID

Affiliation:

1. Department of Emergency Medicine, School of Medicine, Daegu Catholic University, 33 Duryugongwonro 17-gil, Nam-gu, Daegu 42472, Republic of Korea

2. Department of Pharmacy, School of Medicine Keimyung University, 1095 Dalgubul-daero, Dalseogu, Daegu 42601, Republic of Korea

Abstract

Abstract Zoletil® (ZOL) is a combination drug of tiletamine, a dissociative anesthetic and zolazepam, a minor tranquilize, which has been used to induce short-term anesthesia in various animals. Depending on the administered dose, the effects of ZOL can range from sedation to anesthesia. Here, we aimed to determine the neurotoxicity of ZOL and elucidate its mechanism of action using BV-2 microglial cells. The results of MTT reduction assay and TUNEL staining revealed that ZOL induced neuronal toxicity and apoptosis in BV-2 cells. ZOL caused apoptosis via phosphorylation of c-Jun N-terminal kinase, increased ratio of Bax to Bcl-2, disruption of mitochondrial membrane potential, activation of caspase-3, and cleavage of poly (ADP-ribose) polymerase. Furthermore, reactive oxygen species were involved in ZOL-induced neuronal cell death as assessed by 2′,7′-dichlorofluorescein diacetate staining. Moreover, BV-2 cells treated with ZOL exhibited increased expression of inflammatory enzymes, such as inducible nitric oxide synthase and cyclooxygenase-2, along with subsequent production of nitric oxide and prostaglandin E2. ZOL upregulated the expression of interleukin-1β, a proinflammatory cytokine. With respect to its molecular mechanism, ZOL increased the nuclear translocation and DNA binding of redox-sensitive transcription factor NF-κB, which seemed to be mediated by activation of extracellular signal-regulated kinase and p38 mitogen-activated protein kinase. These findings suggest that ZOL leads to apoptosis in BV-2 cells by inducing oxidative stress and inflammatory responses.

Publisher

Oxford University Press (OUP)

Subject

Health, Toxicology and Mutagenesis,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3