Silica nanoparticles induce unfolded protein reaction mediated apoptosis in spermatocyte cells

Author:

Ren Lihua12,Liu Jianhui23,Wei Jialiu4,Du Yefan1,Zou Kaiyue1,Yan Yongyang1,Wang Zhihao1,Zhang Linruo1,Zhang Tong1,Lu Hong1,Zhou Xianqing23,Sun Zhiwei23

Affiliation:

1. Division of Maternal and Child Nursing, School of Nursing, Peking University Health Science Centre, No 38 Xueyuan Road, Haidian District, Beijing 100191, China

2. Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, No 10 Xi Tou Tiao, Fengtai District, Beijing 100069, China

3. Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No 10 Xi Tou Tiao, Fengtai District, Beijing 100069, China

4. Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No 167 North Lishi Road, Xicheng District, Beijing 100037, China

Abstract

Abstract With increasing air pollution, silica nanoparticles (SiNPs), as a main inorganic member of PM2.5, have gained increasing attention to its reproductive toxicity. Most existing studies focused on the acute exposure, while data regarding the chronic effect of SiNPs on reproduction is limited. Therefore, this study was designed to evaluate the chronic toxicity of SiNPs on spermatocyte cells. The cells were continuously exposed to SiNPs for 1, 10, 20 and 30 generations at dose of 5 μg/ml SiNPs for 24 h per generation after attachment. The results showed that with the increasing generations of the exposure, SiNPs decreased the viability of spermatocyte cells, induced apoptosis and increased the level of reactive oxygen species in spermatocyte cells. Moreover, SiNPs increased the protein expression of GRP-78, p-PERK, IRE1α, ATF6 and Cleaved caspase-3 in spermatocyte cells, suggesting that SiNPs improved unfolded protein response (UPR) and apoptosis. The present results indicated that the long-term and low-dose exposure to SiNPs could induce apoptosis by triggering ROS-mediated UPR in spermatocyte cells.

Publisher

Oxford University Press (OUP)

Subject

Health, Toxicology and Mutagenesis,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3