Optimization and mechanism of postponing aging of polysaccharides from Chinese herbal medicine formula

Author:

Pu Xiuying1,Luo Amiao1,Su Hui1,Zhang Kaili1,Tian Changyi1,Chen Bo1,Chai Pengdi1,Xia Xiaoyu1

Affiliation:

1. School of Life Science and Engineering, Lanzhou University of Technology, The Key Lab of Screening, Evaluation and Advanced Processing of TCM and Tibetan Medicine, Gansu Educational Department, No. 287, Langongping Road, Qilihe District, Lanzhou 730050, Gansu, China

Abstract

Abstract To study the extraction technology of polysaccharides (AAP) from Chinese herbal medicine formula and its mechanism of delaying aging. First, L9(3)4 orthogonal test was used to optimize the optimal enzyme-assisted extraction parameters of polysaccharides. And the anti-aging effects was evaluated by detecting mitochondrial function, protein, DNA, adhesion molecules and cell cycle in aging rats. The optimal extraction process parameters were the cellulase concentration of 1.5%, the pH at 5, the enzyme temperature at 50°C and the extraction time of 180 min. The anti-aging results showed that AAP can effectively increase the activities of malate dehydrogenase, succinate dehydrogenase and superoxide dismutase. It also can decrease the activity of monoamine oxidase and methane dicarboxylic aldehyde levels in the brain tissue. Meanwhile, the polysaccharides enhanced telomerase activity while reduced p16 protein expression of the brain mitochondria. In addition, the polysaccharides continued to improve heart damage and significantly lessen mitochondrial DNA concentrations. For a certain period of time, it also enhanced the activity of superoxide dismutase, reduced glutathione, glutathione peroxidase and decreased protein carbonyl and methane dicarboxylic aldehyde content of kidney in D-galactose-induced aging rats. Furthermore, the polysaccharides restored the number of cells in the peripheral blood lines and BMNC through inhibiting the drop of the number of red blood cells, white blood cells, platelets in the peripheral blood and bone marrow mononuclear cell of the aging rats. At the same time, AAP accelerated G1 phase cell to enter S phase in cell cycle in aging rats. Our research suggests that the polysaccharides may be a potential anti-aging agent and can be further developed as a functional food or new drug to delay aging or treat aging-related diseases.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for Key Laboratory of Drug Screening and Deep Processing for Traditional Chinese and Tibetan Medicine of Gansu Province

Publisher

Oxford University Press (OUP)

Subject

Health, Toxicology and Mutagenesis,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3