Modeling Flow-Ecology Responses in the Anthropocene: Challenges for Sustainable Riverine Management

Author:

Horne Avril C1,Nathan Rory1,Poff N LeRoy23,Bond Nick R4,Webb J Angus1,Wang Jun5,John Andrew1

Affiliation:

1. Water, Environment, and Agriculture Program, School of Engineering, The University of Melbourne, Melbourne, Victoria, Australia

2. Department of Biology, Colorado State University, Fort Collins

3. Institute for Applied Ecology, University of Canberra, Bruce, Australian Capital Territory, Australia

4. Centre for Freshwater Ecosystems, La Trobe University, Wodonga, Victoria, Australia

5. Beijing Municipal Institute of City Planning and Design, Beijing, China

Abstract

Abstract Climate change will increase water stress in many regions placing greater pressures on rivers to meet human and ecological water needs. Managing rivers experiencing water stress requires a fundamental understanding of how ecosystem processes and functions respond to natural and anthropogenic drivers of flow variability and change. The field of environmental flows meets this need by defining “flow-ecology” relationships—mathematical models linking ecological characteristics and dynamics to the underlying flow regime. However, because these relationships are most often based on historical hydrologic regimes, they implicitly assume climatic stationarity. A fundamental challenge in the Anthropocene is how to model flow-ecology relationships such that the effects of nonstationarity can be captured. In the present article, we introduce a novel approach that addresses these shortcomings and show its utility through a series of conceptual and empirical examples. The framework incorporates ecological dynamics and uncertain future hydrologic conditions, as well as nonstationarity itself, thereby providing a viable framework for modeling flow-ecology responses to inform water management in a rapidly changing climate.

Funder

Australian Research Council

Australian Postgraduate Award

Publisher

Oxford University Press (OUP)

Subject

General Agricultural and Biological Sciences

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3