Divergent Adaptations in Autonomic Nerve Activity and Neuroimmune Signaling Associated With the Severity of Inflammation in Chronic Colitis

Author:

Stavely Rhian12,Rahman Ahmed A12,Sahakian Lauren1,Prakash Monica D13,Robinson Ainsley M1,Hassanzadeganroudsari Majid1,Filippone Rhiannon T1,Fraser Sarah1,Eri Rajaraman4,Bornstein Joel C5,Apostolopoulos Vasso1ORCID,Nurgali Kulmira167ORCID

Affiliation:

1. Institute for Health and Sport, Victoria University, Western Centre for Health Research and Education, Sunshine Hospital , Melbourne, Victoria , Australia

2. Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School , Boston, Massachusetts , USA

3. School of Health and Biomedical Sciences, RMIT University , Melbourne, Victoria , Australia

4. School of Health Sciences, The University of Tasmania , Launceston, Tasmania , Australia

5. Department of Physiology, The University of Melbourne , Melbourne, Victoria , Australia

6. Department of Medicine Western Health, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne , Melbourne, Victoria , Australia

7. Regenerative Medicine and Stem Cells Program, Australian Institute of Musculoskeletal Science (AIMSS) , Melbourne, Victoria , Australia

Abstract

Abstract Background The autonomic nervous system (ANS) is thought to play a critical role in the anti-inflammatory reflex pathway in acute colitis via its interaction with the spleen and colon. Inflammation in the intestine is associated with a blunting of vagal signaling and increased sympathetic activity. As a corollary, methods to restore sympatho-vagal balance are being investigated as therapeutic strategies for the treatment of intestinal inflammation. Nevertheless, it is indefinite whether these autonomic signaling adaptations in colitis are detrimental or beneficial to controlling intestinal inflammation. In this study, models of moderate and severe chronic colitis are utilized to resolve the correlations between sympatho-vagal signaling and the severity of intestinal inflammation. Methods Spleens and colons were collected from Winnie (moderate colitis), Winnie-Prolapse (severe colitis), and control C57BL/6 mice. Changes to the size and histomorphology of spleens were evaluated. Flow cytometry was used to determine the expression of adrenergic and cholinergic signaling proteins in splenic B and T lymphocytes. The inflammatory profile of the spleen and colon was determined using a RT-PCR gene array. Blood pressure, heart rate, splanchnic sympathetic nerve and vagus nerve activity were recorded. Results Spleens and colons from Winnie and Winnie-Prolapse mice exhibited gross abnormalities by histopathology. Genes associated with a pro-inflammatory response were upregulated in the colons from Winnie and further augmented in colons from Winnie-Prolapse mice. Conversely, many pro-inflammatory markers were downregulated in the spleens from Winnie-Prolapse mice. Heightened activity of the splanchnic nerve was observed in Winnie but not Winnie-Prolapse mice. Conversely, vagal nerve activity was greater in Winnie-Prolapse mice compared with Winnie mice. Splenic lymphocytes expressing α1 and β2 adrenoreceptors were reduced, but those expressing α7 nAChR and producing acetylcholine were increased in Winnie and Winnie-Prolapse mice. Conclusions Sympathetic activity may correlate with an adaptive mechanism to reduce the severity of chronic colitis. The Winnie and Winnie-Prolapse mouse models of moderate and severe chronic colitis are well suited to examine the pathophysiology of progressive chronic intestinal inflammation.

Funder

National Health and Medical Research Council

Publisher

Oxford University Press (OUP)

Subject

Gastroenterology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3