Affiliation:
1. Enteric and Respiratory Virus Laboratory, PHLS Central Public Health Laboratory, 61 Colindale Avenue, London NW9 5HT, UK
Abstract
Abstract
Influenza A, B and C all have a segmented genome, although only certain influenza A subtypes and influenza B cause severe disease in humans. The two major proteins of influenza are the surface glycoproteins—haemagglutinin (HA) and neuraminidase (NA). HA is the major antigen for neutralizing antibodies and is involved in the binding of virus particles to receptors on host cells. Pandemics are a result of novel virus subtypes of influenza A, created by reassortment of the segmented genome (antigenic shift), whereas annual epidemics are a result of evolution of the surface antigens of influenza A and B virus (antigenic drift). The rapid evolution of influenza viruses highlights the importance of surveillance in identifying novel circulating strains. Infectivity of influenza depends on the cleavage of HA by specific host proteases, whereas NA is involved in the release of progeny virions from the cell surface and prevents clumping of newly formed virus. In birds, the natural hosts of influenza, the virus causes gastrointestinal infection and is transmitted via the faeco-oral route. Virulent avian influenza strains, which cause systemic disease, have an HA that is cleaved by proteases present in all cells of the body, rather than by proteases restricted to the intestinal tract. In mammals, replication of influenza subtypes appears restricted to respiratory epithelial cells. Most symptoms and complications, therefore, involve the respiratory tract. However, systemic complications are sometimes observed and other viral genes besides the HA, including the NA, may be involved in determination of virulence of influenza strains in mammals.
Publisher
Oxford University Press (OUP)
Subject
Infectious Diseases,Pharmacology (medical),Pharmacology,Microbiology (medical)
Cited by
191 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献