Validity of Algorithms for Identification of Individuals Suffering from Chronic Noncancer Pain in Administrative Databases: A Systematic Review

Author:

Lacasse Anaïs1ORCID,Cauvier Charest Elizabeth2,Dault Roxanne2,Cloutier Anne-Marie2,Choinière Manon34,Blais Lucie5,Vanasse Alain56

Affiliation:

1. Département des Sciences de la Santé, Université du Québec en Abitibi-Témiscamingue (UQAT), Rouyn-Noranda, Québec, Canada

2. Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada

3. Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, Québec, Canada

4. Département d'Anesthésiologie et de Médecine de la Douleur, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada

5. Faculté de Pharmacie, Université de Montréal, Montréal, Québec, Canada

6. Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CRCHUS), Sherbrooke, Québec, Canada

Abstract

AbstractBackgroundSecondary analysis of health administrative databases is indispensable to enriching our understanding of health trajectories, health care utilization, and real-world risks and benefits of drugs among large populations.ObjectivesThis systematic review aimed at assessing evidence about the validity of algorithms for the identification of individuals suffering from nonarthritic chronic noncancer pain (CNCP) in administrative databases.MethodsStudies reporting measures of diagnostic accuracy of such algorithms and published in English or French were searched in the Medline, Embase, CINAHL, AgeLine, PsycINFO, and Abstracts in Social Gerontology electronic databases without any dates of coverage restrictions up to March 1, 2018. Reference lists of included studies were also screened for additional publications.ResultsOnly six studies focused on commonly studied CNCP conditions and were included in the review. Some algorithms showed a ≥60% combination of sensitivity and specificity values (back pain disorders in general, fibromyalgia, low back pain, migraine, neck/back problems studied together). Only algorithms designed to identify fibromyalgia cases reached a ≥80% combination (without replication of findings in other studies/databases).ConclusionsIn summary, the present investigation informs us about the limited amount of literature available to guide and support the use of administrative databases as valid sources of data for research on CNCP. Considering the added value of such data sources, the important research gaps identified in this innovative review provide important directions for future research. The review protocol was registered with PROSPERO (CRD42018086402).

Funder

Quebec SUPPORT Unit

Canadian Institutes of Health Research

CIHR

Ministère de la Santé et des Services Sociaux du Québec

Fonds de Recherche du Québec Santé

Publisher

Oxford University Press (OUP)

Subject

Anesthesiology and Pain Medicine,Neurology (clinical),General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3