Escherichia coli Strains from Patients with Inflammatory Bowel Diseases have Disease-specific Genomic Adaptations

Author:

Dubinsky Vadim1,Reshef Leah1,Rabinowitz Keren23,Wasserberg Nir45,Dotan Iris24,Gophna Uri1ORCID

Affiliation:

1. Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel-Aviv University , Tel Aviv , Israel

2. Division of Gastroenterology, Rabin Medical Center , Petah-Tikva , Israel

3. Felsenstein Medical Research Center, Rabin Medical Center , Petah Tikva , Israel

4. Sackler Faculty of Medicine, Tel-Aviv University , Tel Aviv , Israel

5. Colorectal Unit, Division of Surgery, Rabin Medical Center , Petah-Tikva , Israel

Abstract

Abstract Background and Aims Escherichia coli is over-abundant in the gut microbiome of patients with inflammatory bowel disease [IBD]. Here, we aimed to identify IBD-specific genomic functions of diverse E. coli lineages. Methods We investigated E. coli genomes from patients with ulcerative colitis [UC], Crohn’s disease [CD] or a pouch, and healthy subjects. The majority of genomes were reconstructed from metagenomic samples, including newly sequenced faecal metagenomes. Clinical metadata were collected. Functional analysis at the gene and mutation level were performed and integrated with IBD phenotypes and biomarkers. Results Overall, 530 E. coli genomes were analysed. The E. coli B2 lineage was more prevalent in UC compared with other IBD phenotypes. Genomic metabolic capacities varied across E. coli lineages and IBD phenotypes. Host mucin utilisation enzymes were present in a single lineage and depleted in patients with a pouch, whereas those involved in inulin hydrolysis were enriched in patients with a pouch. E. coli strains from patients with UC were twice as likely to encode the genotoxic molecule colibactin than strains from patients with CD or a pouch. Strikingly, patients with a pouch showed the highest inferred E. coli growth rates, even in the presence of antibiotics. Faecal calprotectin did not correlate with the relative abundance of E. coli. Finally, we identified multiple IBD-specific non-synonymous mutations in E. coli genes encoding for bacterial cell envelope components. Conclusions Comparative genomics indicates that E. coli is a commensal species adapted to the overactive mucosal immune milieu in IBD, rather than causing it. Our results reveal mutations that may lead to attenuated antigenicity in some E. coli strains.

Funder

Leona M. and Harry B. Helmsley Charitable Trust

Edmond J. Safra Center for Bioinformatics at Tel-Aviv University

Israeli Ministry of Science and Technology

Israeli Ministry of Health

Publisher

Oxford University Press (OUP)

Subject

Gastroenterology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3