DOP80 Automatic detection of ulcers and erosions in PillCam™ Crohn’s capsule using a convolutional neural network

Author:

Saraiva M1,Ribeiro T1,Afonso J1,Cardoso H1,Ferreira J2,Andrade P1,Parente M2,Jorge R2,Lopes S1,Macedo G1

Affiliation:

1. Centro Hospitalar Universitário de S. João- EPE, Gastroenterology, Porto, Portugal

2. Faculdade de Engenharia da Universidade do Porto, Mechanical Engineering, Porto, Portugal

Abstract

Abstract Background Capsule endoscopy (CE) plays a central role in the management of patients with suspected or known Crohn’s disease (CD). It is indicated for the diagnosis, classification, monitoring of the response to treatment, and prognostic prediction. In 2017, PillCam™ Crohn’s Capsule (PCC) was introduced. It has demonstrated greater accuracy in detecting and evaluating the extent of lesions in these patients. However, this new tool produces thousands of images, whose revision is time-consuming and prone to errors, since lesions can be restricted to a small number of images. In the last decade, several Artificial Intelligence (AI) algorithms were developed, and demonstrated potential to mitigate some of the drawbacks of CE. Among AI tools, Convolutional Neural Networks (CNN) display the best performance for imagery analysis. This study aims to develop an AI algorithm based on an CNN for the automatic detection of ulcers and erosions of the small intestine and colon in PCC images. Methods A total of 8 085 PCC images were extracted from a single tertiary centre between 2017–2020. This pool of images was constituted by 2 855 images depicting ulcers, 1 975 erosions; the remaining with normal enteric and colonic mucosa. For the automatic identification of these findings, this pool of images was split into training and validation datasets. A CNN model with transfer learning using tensorflow and keras tools was constructed. The performance of the network was subsequently assessed in an independent test set. Results After optimizing the different layers of the CNN, our model was able to detect and distinguish small intestinal or colonic erosions or ulcers with a sensitivity and specificity of 90.0% and 96.0%, respectively. The precision and accuracy of this model were 97.1% and 92.4%, respectively (Figure 1). Particularly, the CNN detected ulcers with a sensitivity of 83% and specificity of 98%, and erosions with sensitivity and specificity of 91% and 93%, respectively. Conclusion Our group developed, for the first time, a CNN capable of automatically detecting ulcers and erosions of the small intestine and colon in PCC images with high sensitivity and specificity. These findings are extremely important since they pave the way for the development of systems for the automatic detection of clinically significant lesions, optimizing diagnostic performance and efficiency of monitoring CD activity.

Publisher

Oxford University Press (OUP)

Subject

Gastroenterology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Intelligent Control Optimization of Sewage Treatment Process Based on Process Neural Network;Proceedings of the 4th International Conference on Big Data Analytics for Cyber-Physical System in Smart City - Volume 1;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3