Selenoprotein T Promotes Proliferation and G1-to-S Transition in SK-N-SH Cells: Implications in Parkinson's Disease

Author:

Shao Zi-Qiang123,Zhang Xiong1,Fan Hui-Hui2,Wang Xiao-Shuang2,Wu Hong-Mei2,Zhang Li45,Cheng Wen-Hsing4ORCID,Zhu Jian-Hong12

Affiliation:

1. Department of Geriatrics and Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China

2. Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China

3. Department of Critical Care Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China

4. Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, MS, USA

5. Department of Poultry Science, Mississippi State University, Mississippi State, MS, USA

Abstract

ABSTRACT Background Selenium is prioritized to the brain mainly for selenoprotein expression. Selenoprotein T (SELENOT) protects dopaminergic, postmitotic neurons in a mouse model of Parkinson's disease (PD). Objective We hypothesized a proliferative role of SELENOT in neural cells. Methods To assess SELENOT status in PD, sedated male C57BL/6 mice at 10–12 wk of age were injected with 6-hydroxydopamine in neurons, and human peripheral blood mononuclear cells were isolated from 9 healthy subjects (56% men, 68-y-old) and 11 subjects with PD (64% men, 63-y-old). Dopaminergic neural progenitor–like SK-N-SH cells with transient SELENOT overexpression or knockdown were maintained in the presence or absence of the antioxidant N-acetyl-l-cysteine and the calcium channel blocker nimodipine. Cell cycle, proliferation, and signaling parameters were determined by immunoblotting, qPCR, and flow cytometry. Results SELENOT mRNA abundance was increased (P < 0.05) in SK-N-SH cells treated with 1-methyl-4-phenylpyridinium iodide (3.5-fold) and peripheral blood mononuclear cells from PD patients (1.6-fold). Likewise, SELENOT was expressed in tyrosine hydroxylase–positive dopaminergic neurons of 6-hydroxydopamine–injected mice. Knockdown of SELENOT in SK-N-SH cells suppressed (54%; P < 0.05) 5-ethynyl-2′-deoxyuridine incorporation but induced (17–47%; P < 0.05) annexin V–positive cells, CASPASE-3 cleavage, and G1/S cell cycle arrest. SELENOT knockdown and overexpression increased (88–120%; P < 0.05) and reduced (37–42%; P < 0.05) both forkhead box O3 and p27, but reduced (51%; P < 0.05) and increased (1.2-fold; P < 0.05) cyclin-dependent kinase 4 protein abundance, respectively. These protein changes were diminished by nimodipine or N-acetyl-l-cysteine treatment (24 h) at steady-state levels. While the N-acetyl-l-cysteine treatment did not influence the reduction in the amount of calcium (13%; P < 0.05) by SELENOT knockdown, the nimodipine treatment reversed the decreased amount of reactive oxygen species (33%; P < 0.05) by SELENOT overexpression. Conclusions These cellular and mouse data link SELENOT to neural proliferation, expanding our understanding of selenium protection in PD.

Funder

National Natural Science Foundation of China

Zhejiang Provincial Natural Science Foundation

Science and Technology Department of Zhejiang Province

Zhejiang Provincial Medical Technology Program

Wenzhou Municipal Science and Technology Bureau

National Institute of Food and Agriculture

Publisher

Oxford University Press (OUP)

Subject

Nutrition and Dietetics,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3