Biomechanics of tendrils and adhesive pads of the climbing passion flower Passiflora discophora

Author:

Klimm Frederike123ORCID,Schmier Stefanie1,Bohn Holger F1,Kleiser Svenja1ORCID,Thielen Marc123ORCID,Speck Thomas1234ORCID

Affiliation:

1. Plant Biomechanics Group @ Botanic Garden, University of Freiburg, Freiburg, Germany

2. Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), Freiburg, Germany

3. Freiburg Materials Research Center (FMF), Freiburg, Germany

4. Cluster of Excellence livMatS @ FIT–Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Germany

Abstract

Abstract The climbing passion flower Passiflora discophora features branched tendrils with multiple adhesive pads at their tips allowing it to attach to large-diameter supports and to flat surfaces. We conducted tensile tests to quantify the performance of this attachment system. We found that the force at failure varies with substrate, ontogenetic state (turgescent or senescent), and tendril size (i.e. tendril cross-sectional area and pad area). The tendrils proved to be well balanced in size and to attach firmly to a variety of substrates (force at failure up to 2N). Pull-off tests performed with tendrils grown on either epoxy, plywood, or beech bark revealed that senescent tendrils could still bear 24, 64, or 100% of the force measured for turgescent tendrils, respectively, thus providing long-lasting attachment at minimal physiological costs. The tendril main axis was typically the weakest part of the adhesive system, whereas the pad–substrate interface never failed. This suggests that the plants use the slight oversizing of adhesive pads as a strategy to cope with ‘unpredictable’ substrates. The pads, together with the spring-like main axis, which can, as shown, dissipate a large amount of energy when straightened, thus constitute a fail-safe attachment system.

Funder

European Union’s Horizon 2020 Research

Deutsche Forschungsgemeinschaft

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3