Homoploid F1 hybrids and segmental allotetraploids of japonica and indica rice subspecies show similar and enhanced tolerance to nitrogen deficiency than parental lines

Author:

Sun Yue12ORCID,Wu Ying2,Wang Yangzhi2,Wang Shengnan1,Wang Xiaofei2,Li Guo2,Zhang Xue1,Liang Zidong1,Li Jiahao2,Gong Lei2,Wendel Jonathan F3,Wang Deli1,Liu Bao2ORCID

Affiliation:

1. Key Laboratory of Vegetation Ecology of Ministry of Education (MOE), Institute of Grassland Science, Northeast Normal University, Changchun 130024, China

2. Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China

3. Department of Ecology, Evolution & Organismal Biology, lowa State University, Ames, IA 50011, USA

Abstract

Abstract It remains unclear whether the merger of two divergent genomes by hybridization at the homoploid level or coupled with whole-genome duplication (WGD; allopolyploidy) can result in plants having better tolerance to stress conditions. In this study, we compared phenotypic performance and gene expression in the two diploid subspecies of rice (Oryza sativa subsp. japonica and indica), their reciprocal F1 hybrids, and in segmental allotetraploids under normal and nitrogen (N)-deficient conditions. We found that F1 hybrids and tetraploids showed higher and similar levels of tolerance to N deficiency than either parent. In parallel, total expression levels of 18 relevant functional genes were less perturbed by N deficiency in the F1 hybrids and tetraploids than in the parents. This was consistent with stable intrinsic partitioning of allelic/homoeologous expression defined by parental legacy in the homoploid F1 hybrids/tetraploids between the two conditions. The results suggest that genetic additivity at both the homoploid and allopolyploidy level might lead to similar beneficial phenotypic responses to nitrogen stress compared with the parents. The lack of synergistic responses to N limitation concomitant with WGD, relative to that exhibited by F1 hybrids, adds new empirical evidence in support of the emerging hypothesis that hybridization by itself can play a significant role in plant adaptive evolution in times of stress.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Fundamental Research Funds for the Central Universities

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3