Local hydrological gradients structure high intraspecific variability in plant hydraulic traits in two dominant central Amazonian tree species

Author:

Garcia Maquelle N1ORCID,Hu Jia2,Domingues Tomas F3,Groenendijk Peter4,Oliveira Rafael S4,Costa Flávia R C5

Affiliation:

1. Tropical Forest Science Program, National Institute of Amazon Researches, Manaus, AM, Brazil

2. School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, USA

3. Department of Biology, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil

4. Department of Plant Biology, Institute of Biology, P.O. Box: 6109, University of Campinas – UNICAMP, 13083-970, Campinas, SP, Brazil

5. Coordenação de Pesquisas em Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Caixa Postal 2223, CEP 69008-971, Manaus, AM, Brazil

Abstract

Abstract Addressing the intraspecific variability of functional traits helps understand how climate change might influence the distribution of organismal traits across environments, but this is notably understudied in the Amazon, especially for plant hydraulic traits commonly used to project drought responses. We quantified the intraspecific trait variability of leaf mass per area, wood density, and xylem embolism resistance for two dominant central Amazonian tree species, along gradients of water and light availability, while accounting for tree age and height. Intraspecific variability in hydraulic traits was high, with within-species variability comparable to the whole-community variation. Hydraulic trait variation was modulated mostly by the hydrological environment, with higher embolism resistance of trees growing on deep-water-table plateaus compared with shallow-water-table valleys. Intraspecific variability of leaf mass per area and wood density was mostly modulated by intrinsic factors and light. The different environmental and intrinsic drivers of variation among and within individuals lead to an uncoupled coordination among carbon acquisition/conservation and water-use traits. Our findings suggest multivariate ecological strategies driving tropical tree distributions even within species, and reflect differential within-population sensitivities along environmental gradients. Therefore, intraspecific trait variability must be considered for accurate predictions of the responses of tropical forests to climate change.

Funder

National Council for Scientific and Technological Development

United States Agency for International Development

São Paulo Research Foundation

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3