Transcription factor MaMADS36 plays a central role in regulating banana fruit ripening

Author:

Liu Juhua12ORCID,Liu Mengting13,Wang Jingyi1,Zhang Jing1,Miao Hongxia12,Wang Zhuo12,Jia Caihong1,Zhang Jianbin1,Xu Biyu1,Jin Zhiqiang1

Affiliation:

1. Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture; Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China

2. Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China

3. College of Horticulture, Hainan University, Haikou, China

Abstract

Abstract Bananas are model fruits for studying starch conversion and climactericity. Starch degradation and ripening are two important biological processes that occur concomitantly in banana fruit. Ethylene biosynthesis and postharvest fruit ripening processes, i.e. starch degradation, fruit softening, and sugar accumulation, are highly correlated and thus could be controlled by a common regulatory switch. However, this switch has not been identified. In this study, we transformed red banana (Musa acuminata L.) with sense and anti-sense constructs of the MaMADS36 transcription factor gene (also MuMADS1, Ma05_g18560.1). Analysis of these lines showed that MaMADS36 interacts with 74 other proteins to form a co-expression network and could act as an important switch to regulate ethylene biosynthesis, starch degradation, softening, and sugar accumulation. Among these target genes, musa acuminata beta-amylase 9b (MaBAM9b, Ma05_t07800.1), which encodes a starch degradation enzyme, was selected to further investigate the regulatory mechanism of MaMADS36. Our findings revealed that MaMADS36 directly binds to the CA/T(r)G box of the MaBAM9b promoter to increase MaBAM9b transcription and, in turn, enzyme activity and starch degradation during ripening. These results will further our understanding of the fine regulatory mechanisms of MADS-box transcription factors in regulating fruit ripening, which can be applied to breeding programs to improve fruit shelf-life.

Funder

National Key R & D Program of China

National Natural Science Foundation of China

China Agriculture Research System of MOF and MARA

NCBI Sequence Read Archive

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3