BnaC7.ROT3, the causal gene of cqSL-C7, mediates silique length by affecting cell elongation in Brassica napus

Author:

Zhou Xianming1,Zhang Haiyan1,Wang Pengfei1,Liu Ying1,Zhang Xiaohui1,Song Yixian1,Wang Zhaoyang1,Ali Ahmad1,Wan Lili2ORCID,Yang Guangsheng1,Hong Dengfeng1ORCID

Affiliation:

1. National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China

2. Institute of Crops, Wuhan Academy of Agricultural Sciences, Wuhan, Hubei, China

Abstract

Abstract Siliques are a major carbohydrate source of energy for later seed development in rapeseed (Brassica napus). Thus, silique length has received great attention from breeders. We previously detected a novel quantitative trait locus cqSL-C7 that controls silique length in B. napus. Here, we further validated the cqSL-C7 locus and isolated its causal gene (BnaC7.ROT3) by map-based cloning. In ‘Zhongshuang11’ (parent line with long siliques), BnaC7.ROT3 encodes the potential cytochrome P450 monooxygenase CYP90C1, whereas in ‘G120’ (parent line with short siliques), a single nucleotide deletion in the fifth exon of BnaC7.ROT3 results in a loss-of-function truncated protein. Sub-cellular localization and expression pattern analysis revealed that BnaC7.ROT3 is a membrane-localized protein mainly expressed in leaves, flowers and siliques. Cytological observations showed that the cells in silique walls of BnaC7.ROT3-transformed positive plants were longer than those of transgene-negative plants in the background of ‘G120’, suggesting that BnaC7.ROT3 affects cell elongation. Haplotype analysis demonstrated that most alleles of BnaC7.ROT3 are favorable in B. napus germplasms, and its homologs may also be involved in silique length regulation. Our findings provide novel insights into the regulatory mechanisms of natural silique length variations and valuable genetic resources for the improvement of silique length in rapeseed.

Funder

Natural Science Foundation of Hubei Province

Wuhan Applied Foundational Frontier Project

National Key Laboratory of Crop Genetic Improvement

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3