Genetic autonomy and low singlet oxygen yield support kleptoplast functionality in photosynthetic sea slugs

Author:

Havurinne Vesa1ORCID,Handrich Maria2,Antinluoma Mikko1,Khorobrykh Sergey1ORCID,Gould Sven B2ORCID,Tyystjärvi Esa1ORCID

Affiliation:

1. Department of Biotechnology/Molecular Plant Biology, University of Turku, Turku, Finland

2. Department of Biology, Heinrich-Heine-Universität, Düsseldorf, Germany

Abstract

Abstract The kleptoplastic sea slug Elysia chlorotica consumes Vaucheria litorea, stealing its plastids, which then photosynthesize inside the animal cells for months. We investigated the properties of V. litorea plastids to understand how they withstand the rigors of photosynthesis in isolation. Transcription of specific genes in laboratory-isolated V. litorea plastids was monitored for 7 days. The involvement of plastid-encoded FtsH, a key plastid maintenance protease, in recovery from photoinhibition in V. litorea was estimated in cycloheximide-treated cells. In vitro comparison of V. litorea and spinach thylakoids was applied to investigate reactive oxygen species formation in V. litorea. In comparison to other tested genes, the transcripts of ftsH and translation elongation factor EF-Tu (tufA) decreased slowly in isolated V. litorea plastids. Higher levels of FtsH were also evident in cycloheximide-treated cells during recovery from photoinhibition. Charge recombination in PSII of V. litorea was found to be fine-tuned to produce only small quantities of singlet oxygen, and the plastids also contained reactive oxygen species-protective compounds. Our results support the view that the genetic characteristics of the plastids are crucial in creating a photosynthetic sea slug. The plastid’s autonomous repair machinery is likely enhanced by low singlet oxygen production and elevated expression of FtsH.

Funder

Academy of Finland

Finnish Cultural Foundation

Finnish Academy of Science and Letters

Turku University Foundation

University of Turku Graduate School

German Research Council

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3