Adenosine 5′ phosphosulfate reductase and sulfite oxidase regulate sulfite-induced water loss in Arabidopsis

Author:

Bekturova Aizat1,Oshanova Dinara1,Tiwari Poonam2,Nurbekova Zhadyrassyn1,Kurmanbayeva Assylay1,Soltabayeva Aigerim1,Yarmolinsky Dmitry2,Srivastava Sudhakar2,Turecková Veronika3,Strnad Miroslav3,Sagi Moshe4ORCID

Affiliation:

1. The Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel

2. Jacob Blaustein Center for Scientific Cooperation, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel

3. Laboratory of Growth Regulators, Palacky University & Institute of Experimental Botany ASCR, Slechtitelu 11, Olomouc, Czech Republic

4. Plant Stress Laboratory, French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boker Campus, Israel

Abstract

Abstract Chloroplast-localized adenosine-5’-phosphosulphate reductase (APR) generates sulfite and plays a pivotal role in reduction of sulfate to cysteine. The peroxisome-localized sulfite oxidase (SO) oxidizes excess sulfite to sulfate. Arabidopsis wild type, SO RNA-interference (SO Ri) and SO overexpression (SO OE) transgenic lines infiltrated with sulfite showed increased water loss in SO Ri plants, and smaller stomatal apertures in SO OE plants compared with wild-type plants. Sulfite application also limited sulfate and abscisic acid-induced stomatal closure in wild type and SO Ri. The increases in APR activity in response to sulfite infiltration into wild type and SO Ri leaves resulted in an increase in endogenous sulfite, indicating that APR has an important role in sulfite-induced increases in stomatal aperture. Sulfite-induced H2O2 generation by NADPH oxidase led to enhanced APR expression and sulfite production. Suppression of APR by inhibiting NADPH oxidase and glutathione reductase2 (GR2), or mutation in APR2 or GR2, resulted in a decrease in sulfite production and stomatal apertures. The importance of APR and SO and the significance of sulfite concentrations in water loss were further demonstrated during rapid, harsh drought stress in root-detached wild-type, gr2 and SO transgenic plants. Our results demonstrate the role of SO in sulfite homeostasis in relation to water consumption in well-watered plants.

Funder

Israel Science Foundation

Ministry of Agriculture and Rural Development, Israel

Gerda Frieberg Chair in Agricultural Water Management

European Regional Development Fund-Project

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3