Natural variation in rice ascorbate peroxidase gene APX9 is associated with a yield-enhancing QTL cluster

Author:

Jeon Yun-A1,Lee Hyun-Sook1,Kim Sun-Ha1,Shim Kyu-Chan1,Kang Ju-Won2,Kim Hyun-Jung3,Tai Thomas H45,Ahn Sang-Nag1ORCID

Affiliation:

1. Department of Agronomy, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Republic of Korea

2. Department of Southern Area Crop Science, Rural Development Administration, Miryang 50424, Republic of Korea

3. LG Chem Ltd, Seoul 07796, Republic of Korea

4. USDA-ARS Crops Pathology and Genetics Research Unit, Davis, CA 95616, USA

5. Department of Plant Sciences, University of California, Davis, CA 95616, USA

Abstract

Abstract We previously identified a cluster of yield-related quantitative trait loci (QTLs) including plant height in CR4379, a near-isogenic line from a cross between Oryza sativa spp. japonica cultivar ‘Hwaseong’ and the wild relative Oryza rufipogon. Map-based cloning and transgenic approaches revealed that APX9, which encodes an l-ascorbate peroxidase 4, is associated with this cluster. A 3 bp InDel was observed leading to the addition of a valine in Hwaseong compared with O. rufipogon. APX9-overexpressing transgenic plants in the Hwaseong background were taller than Hwaseong. Consistent with these results, APX9 T-DNA insertion mutants in the japonica cultivar Dongjin were shorter. These results confirm that APX9 is the causal gene for the QTL cluster. Sequence analysis of APX9 from 303 rice accessions revealed that the 3 bp InDel clearly differentiates japonica (APX9HS) and O. rufipogon (APX9OR) alleles. indica accessions shared both alleles, suggesting that APX9HS was introgressed into indica followed by crossing. The finding that O. rufipogon accessions with different origins carry APX9OR suggests that the 3 bp insertion was specifically selected in japonica during its domestication. Our findings demonstrate that APX9 acts as a major regulator of plant development by controlling a valuable suite of agronomically important traits in rice.

Funder

Ministry of Education

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3