Hydrogen peroxide signalling mediates fertilization and post-fertilization development in the red alga Bostrychia moritziana

Author:

Shim Eunyoung1ORCID,Lee Ji Woong1ORCID,Park Hana1ORCID,Zuccarello Giuseppe C2ORCID,Kim Gwang Hoon1ORCID

Affiliation:

1. Department of Biological Sciences, Kongju National University, Gongju 32588, Korea

2. School of Biological Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand

Abstract

Abstract Reactive oxygen species (ROS) signalling has a multitude of roles in cellular processes throughout biology. We hypothesized that red algal fertilization may offer an interesting model to study ROS-mediated signalling, as the stages of fertilization are complex and unique. We detected the localization of ROS production microscopically and monitored the expression of three homologues of NADPH oxidase in reproductive cells during fertilization. ROS were instantaneously produced by spermatia (sperm) when they attached to female trichogynes, diffused across the cell membrane in the form of H2O2, and triggered ROS generation in the carpogonium (egg) as well as carpogonial branch cells which are not in direct contact with spermatia. The expression of NADPH oxidase homologues, RESPIRATORY BURST OXIDASE HOMOLOGUES (BmRBOHs), began to be up-regulated in the female plant upon gamete binding, peaking during the fertilization process and descending back to their original level after fertilization. Pre-treatment with diphenylene iodonium or caffeine blocked gene expression as well as H2O2 production. Post-fertilization development was also inhibited when the redox state of the plants was perturbed with H2O2 at any time before or after the fertilization. Our results suggest that H2O2 acts as an auto-propagating signalling molecule, possibly through Ca2+ channel activation, and regulates gene expression in fertilization as well as post-fertilization development in red algae.

Funder

Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, and Forestry

Ministry of Agriculture, Food and Rural Affairs

Ministry of Oceans and Fisheries

Rural Development Administration

National Research Foundation of Korea

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3