Delaying or delivering: identification of novel NAM-1 alleles that delay senescence to extend wheat grain fill duration

Author:

Chapman Elizabeth A1ORCID,Orford Simon1,Lage Jacob2,Griffiths Simon1ORCID

Affiliation:

1. John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK

2. KWS-UK, 56 Church Street, Thriplow, Hertfordshire SG8 7RE, UK

Abstract

Abstract Senescence is a complex trait under genetic and environmental control, in which resources are remobilized from vegetative tissue into grain. Delayed senescence, or ‘staygreen’ traits, can confer stress tolerance, with extended photosynthetic activity hypothetically sustaining grain filling. The genetics of senescence regulation are largely unknown, with senescence variation often correlated with phenological traits. Here, we confirm staygreen phenotypes of two Triticum aestivum cv. Paragon ethyl methane sulfonate mutants previously identified during a forward genetic screen and selected for their agronomic performance, similar phenology, and differential senescence phenotypes. Grain filling experiments confirmed a positive relationship between onset of senescence and grain fill duration, reporting an associated ~14% increase in final dry grain weight for one mutant (P<0.05). Recombinant inbred line (RIL) populations segregating for the timing of senescence were developed for trait mapping purposes and phenotyped over multiple years under field conditions. Quantification and comparison of senescence metrics aided RIL selection, facilitating exome capture-enabled bulk segregant analysis (BSA). Using BSA we mapped our two staygreen traits to two independent, dominant, loci of 4.8 and 16.7 Mb in size encompassing 56 and 142 genes, respectively. Combining association analysis with variant effect prediction, we identified single nucleotide polymorphisms encoding self-validating mutations located in NAM-1 homoeologues, which we propose as gene candidates.

Funder

UK Biotechnology and Biological Sciences Research Council

KWS-UK

UK Department for Environment and Rural Affairs

Institut National de la Recherche Agronomique

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

Reference94 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3