Melatonin promotes Arabidopsis primary root growth in an IAA-dependent manner

Author:

Yang Li1,You Jun2,Li Jinzhu3,Wang Yanping1,Chan Zhulong1ORCID

Affiliation:

1. Key Laboratory of Horticultural Plant Biology Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, 430070, China

2. Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, The Chinese Academy of Agricultural Sciences, Wuhan, Hubei, 430071, China

3. College of Life Sciences, Northwest A& F University, Yangling Shaanxi, 712100, China

Abstract

Abstract Melatonin has been characterized as a growth regulator in plants. Melatonin shares tryptophan as the precursor with the auxin indole-3-acetic acid (IAA), but the interplay between melatonin and IAA remains controversial. In this study, we aimed to dissect the relationship between melatonin and IAA in regulating Arabidopsis primary root growth. We observed that melatonin concentrations ranging from 10–9 to 10–6 M functioned as IAA mimics to promote primary root growth in Arabidopsis wild type, as well as in pin-formed (pin) single and double mutants. Transcriptome analysis showed that changes in gene expression after melatonin and IAA treatment were moderately correlated. Most of the IAA-regulated genes were co-regulated by melatonin, indicating that melatonin and IAA regulated a similar subset of genes. Melatonin partially rescued primary root growth defects in pin single and double mutant plants. However, melatonin treatment had little effect on primary root growth in the presence of high concentrations of auxin biosynthesis inhibitors, or polar transport inhibitor, and could not rescue the root length defect of the IAA biosynthesis quintuple mutant yucQ. Therefore, we propose that melatonin promotes primary root growth in an IAA-dependent manner.

Funder

Fundamental Research Funds for the Central Universities

Huazhong Agricultural University

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3