Machine learning and deep learning tools for the automated capture of cancer surveillance data

Author:

Hsu Elizabeth1,Hanson Heidi2,Coyle Linda3,Stevens Jennifer3,Tourassi Georgia4,Penberthy Lynne1

Affiliation:

1. Surveillance Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute , Bethesda, MD, USA

2. Advanced Computing for Health Sciences, Computing and Computational Sciences Directorate, Oak Ridge National Laboratory , Oak Ridge, TN, USA

3. Information Management Services Inc , Calverton, MD, USA

4. Computing and Computational Sciences Directorate , Oak Ridge National Laboratory, Oak Ridge, TN, USA

Abstract

Abstract The National Cancer Institute and the Department of Energy strategic partnership applies advanced computing and predictive machine learning and deep learning models to automate the capture of information from unstructured clinical text for inclusion in cancer registries. Applications include extraction of key data elements from pathology reports, determination of whether a pathology or radiology report is related to cancer, extraction of relevant biomarker information, and identification of recurrence. With the growing complexity of cancer diagnosis and treatment, capturing essential information with purely manual methods is increasingly difficult. These new methods for applying advanced computational capabilities to automate data extraction represent an opportunity to close critical information gaps and create a nimble, flexible platform on which new information sources, such as genomics, can be added. This will ultimately provide a deeper understanding of the drivers of cancer and outcomes in the population and increase the timeliness of reporting. These advances will enable better understanding of how real-world patients are treated and the outcomes associated with those treatments in the context of our complex medical and social environment.

Funder

Joint Design of Advanced Computing Solutions for Cancer

Department of Energy

National Cancer Institute

National Institutes of Health

Los Alamos National Laboratory

Oak Ridge National Laboratory

Oak Ridge Leadership Computing Facility

Office of Science

IMS

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3