Affiliation:
1. Key Laboratory of Transient Physical Mechanics and Energy Conversion Materials of Liaoning Province, Shenyang Ligong University , Shenyang, 110159, China
Abstract
ABSTRACT
In the process of underwater motion, the trajectory of the projectile will be greatly disturbed due to the complicated underwater environment and cavitation effect. In order to study the effect of the ice water mixture on projectile motion, the experiments of a titanium alloy slender body with a truncated conical and plat warhead passing through ice and water mixture have been performed by using a one-stage light gas gun loading system, an overpressure sensor measurement system and a high-speed camera acquisition system in this paper. The experimental results show that the volume of the cavity generated by the slender body with a small length-to-diameter ratio is larger, and the slender body deflects in the process of movement. For a slender body with a large length-to-diameter ratio, the cavity formed is closer to the central axis and the maximum radial size of the cavity. No matter the warhead shapes are truncated conical or plat warhead, the diameter and lasting time of the cavity increase with the increase of the slender body's velocities. Under the condition that the length-to-diameter ratio and the velocity of the slender bodies are similar, the overall evolutionary trend of the overpressure generated by two kinds of slender bodies is similar. But the fluctuation range of the overpressure amplitude of the plat warhead is small, the curve oscillation amplitude of the adjacent time is large and the peak value of the overpressure for the truncated conical warhead is large. Under the same ratio of length to diameter, the velocity has no obvious influence on the trajectory of the slender body after hitting the ice particles. When the slender body collides with ice particles, the deflection angle of its trajectory is larger than that of impacting on the edge of ice particles. When the slender body collides with the ice particles, the interaction between the ice particles and the slender body is large, and the deflection angle of the slender body is larger after impact.
Funder
National Natural Science Foundation of China
Publisher
Oxford University Press (OUP)
Subject
Applied Mathematics,Mechanical Engineering,Condensed Matter Physics
Reference20 articles.
1. Medium scale ice-structure interaction;Moslet;Cold Region Science and Technology,2006
2. Mechanics of ice-structure interaction;Jordand;Engineering Fracture Mechanics,1999
3. Isolated ice floe impacts;Timco;Cold Regions Science and Technology,2011
4. Development of water exit test facility of high-speed body and flow visualization of the flow field;Hong-hui;Journal of Zhejiang Institute of Science and Technology,2011
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献