Tuning the roughness of aluminum surfaces for superrepellency and absorptivity

Author:

Chang Chun-Ti1ORCID,Bhak Andrew J2,Hanggi Daniel J2,Kemler Kayla M2,Malkani Arnav S2,Kang Edward W2

Affiliation:

1. Department of Mechanical Engineering, National Taiwan University , Taipei, Taiwan

2. School of Chemical and Biomolecular Engineering, Cornell University , Ithaca, NY, USA

Abstract

Abstract Superrepellent surfaces are known to be made by surface roughening. However, optimizing roughness solely for non-wetting and low hysteresis, which promotes self-cleaning, typically occurs at a cost to other properties. The other property, considered here as illustrative, is energy absorption from impinging sunlight. Roughness can be tuned for self-cleaning or alternatively for energy absorption, yet the roughness scales for superrepellency and absorptivity do not align cooperatively. Demonstrated here are a twin of simple fabrication methods that tune aluminum surfaces for good self-cleaning and for solar energy absorption. Our results show that superrepellency is favored by roughness scales of microns or smaller alone. On the other hand, roughness of a few microns to tens of microns significantly improves absorption. Our characterizations of surfaces made by the two methods demonstrate how tuning microscale roughness trades superrepellency for absorptivity. The surfaces are robust and the fabrication method is economical. Solar heat harvesting applications may benefit.

Funder

National Science Foundation

National Taiwan University

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Mechanical Engineering,Condensed Matter Physics

Reference42 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3