Stroh formalism for various types of materials and deformations

Author:

Hwu Chyanbin1ORCID,Becker Wilfried2

Affiliation:

1. Department of Aeronautics and Astronautics, National Cheng Kung University , Tainan, Taiwan , Republic of China

2. Department of Mechanical Engineering, Technical University of Darmstadt , Germany

Abstract

Abstract The Stroh formalism is a complex variable formulation developed originally for solving the problems of two-dimensional linear anisotropic elasticity. By separation of the third variable for the linear variation of displacements along the thickness direction, it was proved to be applicable for the problems with coupled stretching-bending deformation. By the Radon transform which maps a three-dimensional solid to a two-dimensional plane, it can be applied to the three-dimensional deformation. By the elastic-viscoelastic correspondence principle, it is also valid for the viscoelastic materials in the Laplace domain. By expansion of the matrix dimension, it can be generalized to the coupled-field materials such as piezoelectric, piezomagnetic and magneto-electro-elastic materials. By introducing a small perturbation on the material constants, it can also be applied to the degenerate materials such as isotropic materials. Thus, in this paper, the Stroh formalism for several different types of materials (anisotropic elastic, piezoelectric, piezomagnetic, magneto-electro-elastic, viscoelastic) and deformations (two-dimensional, coupled stretching-bending, three-dimensional) are organized together and presented in the same mathematical form.

Funder

Ministry of Science and Technology

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Mechanical Engineering,Condensed Matter Physics

Reference31 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3