A comprehensive evolutionary and epidemiological characterization of insertion and deletion mutations in SARS-CoV-2 genomes

Author:

Liu Xue1ORCID,Guo Liping1,Xu Tiefeng1,Lu Xiaoyu1,Ma Mingpeng1,Sheng Wenyu1,Wu Yinxia1,Peng Hong1,Cao Liu1,Zheng Fuxiang1,Huang Siyao1,Yang Zixiao1,Du Jie1,Shi Mang1ORCID,Guo Deyin1ORCID

Affiliation:

1. Centre for Infection and Immunity Study (CIIS), School of Medicine (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong 518107, China

Abstract

Abstract SARS-CoV-2, which causes the current pandemic of respiratory illness, is evolving continuously and generating new variants. Nevertheless, most of the sequence analyses thus far focused on nucleotide substitutions despite the fact that insertions and deletions (indels) are equally important in the evolution of SARS-CoV-2. In this study, we analyzed 1,099,664 high-quality sequences of SARS-CoV-2 genomes to re-construct the evolutionary and epidemiological histories of indels. Our analysis revealed 289 circulating indel types (237 deletion and 52 insertion types, each represented by more than ten genomic sequences), among which eighteen were recurrent indel types, each represented by more than 500 genome sequences. Although indels were identified across the entire genome, most of them were identified in nsp6, S, ORF8, and N genes, among which ORF8 indel types had the highest frequencies of frameshift. Geographical and temporal analyses of these variants revealed a few alterations of dominant indel types, each accompanied by geographic expansion to different countries and continents, which resulted in the fixation of several types of indels in the field, including the current variants of concern. Evolutionary and structural analyses revealed that indels involving S N-terminal domain regions were linked to the 3/4 variants of concern, resulting in significantly altered S protein that might contribute to the selective advantage of the corresponding variant. In sum, our study highlights the important role of insertions and deletions in the evolution and spread of SARS-CoV-2.

Funder

Guangdong Province “Pearl River Talent Plan” Innovation and Entrepreneurship Team Project

National Natural Science Foundation of China

Shenzhen Science and Technology Program

Guangdong Zhujiang Talents Program

National Key Research and Development Program of China

Publisher

Oxford University Press (OUP)

Subject

Virology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3