Affiliation:
1. Graduate School of Bioagricultural Sciences, Nagoya University , Furo-cho, Chikusa-ku, Nagoya, 464-8601 Japan
Abstract
Abstract
In the genome of the heterocystous cyanobacterium Calothrix sp. NIES-4101 (NIES-4101), the four genes essential for nitrogen fixation (nifB, nifH, nifD and nifK) are highly fragmented into 13 parts in a 350-kb chromosomal region, and four of these parts are encoded in the reverse strand. Such a complex fragmentation feature makes it difficult to restore the intact nifBHDK genes by the excision mechanism found in the nifD gene of the Anabaena sp. PCC 7120 heterocyst. To examine the nitrogen-fixing ability of NIES-4101, we confirmed that NIES-4101 grew well on a combined nitrogen-free medium and showed high nitrogenase activity, which strongly suggested that the complete nifBHDK genes are restored by a complex recombination process in heterocysts. Next, we resequenced the genome prepared from cells grown under nitrogen-fixing conditions. Two contigs covering the complete nifHDK and nifB genes were found by de novo assembly of the sequencing reads. In addition, the DNA fragments covering the nifBHDK operon were successfully amplified by PCR. We propose that the process of nifBHDK restoration occurs as follows. First, the nifD–nifK genes are restored by four excision events. Then, the complete nifH and nifB genes are restored by two excision events followed by two successive inversion events between the inverted repeat sequences and one excision event, forming the functional nif gene cluster, nifB-fdxN-nifS-nifU-nifH-nifD-nifK. All genes coding recombinases responsible for these nine recombination events are located close to the terminal repeat sequences. The restoration of the nifBHDK genes in NIES-4101 is the most complex genome reorganization reported in heterocystous cyanobacteria.
Funder
Japan Science and Technology Agency
Publisher
Oxford University Press (OUP)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献