Nanoparticle Assisted Fabric Phase Sorptive Extraction for Azo Dye Determination in the Industrial Sewage

Author:

Rahimian Nayereh1,Feizy Javad2,Es’haghi Zarrin1ORCID

Affiliation:

1. Payame Noor University Department of Chemistry, , Nakhl st, Lashkarak Highway, Tehran, 19569, Tehran 19395-4697 , Iran

2. Research Institute of Food Science and Technology (RIFST) Department of Food Safety and Quality Control, , Khorasan Science and Technology Park, CCRF+RV9, PO Box 91735-147, Mashhad , Iran

Abstract

Abstract Currently, one of the significant environmental problems is the presence of azo dye materials in water sources. In this study, for the first time, a fast and sensitive sample preparation approach using nanoparticle-assisted fabric phase sorptive extraction (NFPSE) followed by high-performance liquid chromatography was examined to remove some azo dyes such as methyl red and sunset yellow from aqueous solutions. Primarily, the significance of several parameters affecting NFPSE, such as fabric type, the kind of sorbent, the number of contacts with sol–gel and the time of contact, was investigated. In addition, experiments were performed to determine the effect of different adsorption parameters, such as sample volume, adsorption time, adsorbent value, desorption time, ionic strength and pH. It was found that the calibration curve was linear within two ranges of concentrations (0.05–0.1 and 0.5–15 ng/L for methyl red; 0.05–0.5 and 0.5–15 ng/L for sunset yellow) with correlation coefficients better than 0.9683. The limit of detection was 0.014 ng/L for methyl red and 0.015 ng/L for sunset yellow. Repeatability Relative Standard Deviation (RSD) with three replicated experiments was 1.5–10% for methyl red and 2.5–5.8% for sunset yellow. Relative recovery percentages of 88–96% for methyl red and 62–92% for sunset yellow were obtained in the samples. Moreover, the results have shown that acceptable accuracy, precision and linearity make the “fabric phase sorptive extraction” a proper method for the determination of dyes from industrial sewage samples.

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3