Synthesis of Magnetic Attapulgite Nanoparticles Via a Novel Surface Covalent Reaction Method and its Application in the Magnetic Solid Phase Extraction

Author:

Wu Shuaibin1,Peng Xuejuan2

Affiliation:

1. College of Chemistry and Bioengineering, Yichun University , Xuefu Road No. 576, Yichun 336000 , China

2. Yuanzhou District People’s Court , Yijang Road, Yichun 336000 , China

Abstract

Abstract In this study, the attapulgite nanoparticle was immobilized on the surface of magnetic nanoparticle Fe3O4 via a novel surface covalent reaction method for the magnetic solid phase extraction (MSPE) for the first time. The surface covalent reaction method has the advantages of controllable steps, and can make the magnetic attapulgite nanoparticle (MANP) have good homogeneity and high stability. Field emission scanning electron microscopy, equipped with an energy dispersive spectrometer, Nitrogen adsorption BET, X-ray diffraction and Fourier transform infrared spectroscopy were applied to characterize the prepared MANP, confirming that the attapulgite nanoparticle could be effectively immobilized on the surface of magnetic nanoparticle Fe3O4 via covalent reactions. Under optimal conditions of the MSPE experiment based on the MANP, the limits of detection were found to be 10 ng/mL for melamine and 3 ng/mL for cyromazine with a relative standard deviation < 10% by a high-performance liquid chromatography system. Meanwhile, 0.1 mg/mL melamine in milk and 0.1 mg/mL cyromazine in cucumber can also be detected according to our MSPE procedure. More importantly, the MANP still has good magnetism and enrichment efficiency after several decades of use. These results showed that the MANP prepared by our method is a kind of promising material for the MSPE.

Funder

Jiangxi Provincial Department of Education

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3