Rapid Isolation and Hypoglycemic Activity of Secondary Metabolites of Eurotium cristatum by High-Speed Countercurrent Chromatography

Author:

Li Pengchegn1,Zhu Xiaohan1,Xiao Mi2,Su Yanqi2,Yu Shanshan3,Tang Jintian1,Xue Hongkun1,Cai Xu1ORCID

Affiliation:

1. Key Laboratory of Particle and Radiation Imaging, Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing 100084, P.R. China

2. China Pharmaceutical Preparation Section, Huazhong University of Science and Technology Union Jiangbei Hospital/Wuhan Caidian People's Hospital, Wuhan 430100, P.R. China

3. Personnel Section, Wuhan University Zhongnan Hospital, Wuhan 430065, P.R. China

Abstract

Abstract In this study, secondary metabolites of Eurotium cristatum were isolated and purified by high-speed counter-current chromatography (HSCCC), and their hypoglycemic activities were studied. The general-useful estimate of solvent systems (GUESS) for counter-current chromatography was employed to select the appropriate solvent systems of n-hexane-ethyl acetate-methanol-water (HEMW, 4:6:5:5, v/v/v/v) for HSCCC practice, and three compounds were separated from the crude ethyl acetate extract of E. cristatum in one single step; 6.1 mg of Compounds 1, 5.6 mg of Compound 2 and 3.8 mg of Compound 3 were obtained from 100 mg of crude extract with a stationary phase retention of 75%. The compounds were then identified as emodin methyl ether, chrysophanol and emodin, respectively. The activity of the target compounds in the secondary metabolites of E. cristatum was verified by testing their inhibition on α-glucosidase activity and molecular docking simulation. The results showed that emodin, chrysophanol and emodin methyl ether had significant inhibitory effects on the α-glucosidase activity. This work confirmed the effectiveness of HSCCC in the separation of compounds in complex extracts and provided reference for further research and application of E. cristatum.

Funder

Wuhan Municipal Science and Technology Bureau

Postdoctoral Research Foundation of China

Publisher

Oxford University Press (OUP)

Subject

General Medicine,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3