Quality by design applied to olanzapine and quetiapine LC-MS/MS bioanalysis

Author:

da Mota Castelo Branco Daniel1,Bedor Noely Camila Tavares Cavalcanti2,Silva Carolina Santos3,Bedor Danilo César Galindo12,Pimentel Maria Fernanda3,de Santana Davi Pereira1

Affiliation:

1. Pharmaceutical and Cosmetics Development Center—NUDFAC, Federal University of Pernambuco, Avenida Professor Artur de Sá, s/n, Cidade Universitária, Recife, PE 50.730-420, Brazil

2. B&S Innovation in Development and Analysis of Pharmaceutical Products, Rua Costa Sepulveda, 749, Engenho do Meio, Recife, PE 50.730-260, Brazil

3. Department of Chemical Engineering, Federal University of Pernambuco, Avenida Professor Artur de Sá, s/n, Cidade Universitária, Recife, PE 50.730-420, Brazil

Abstract

Abstract One major challenge in quantifying drugs in biological matrices is to manage interfering compounds. A technique such liquid chromatography coupled to mass spectrometry in tandem (LC-MS/MS) is especially suitable for this application due to its high sensitivity and selectivity in detecting low concentrations of analytes in a complex system. Due to the complexity of LC-MS/MS systems, a number of experimental parameters must be optimized to provide an adequate separation and detection of the analyte. In the present work, a design of experiments approach was developed to optimize an LC-MS/MS-based bioanalytical method to extract olanzapine (OLZ) and quetiapine (QTP) from human plasma. Three steps for the optimization process were conducted: central composite face-centered design to optimize chromatographic parameters (Step 1), ionization in mass spectrometry (Step 2) and a full 32 factorial design to optimize analyte extraction conditions (Step 3). After the optimization process, resolutions and QTP and OLZ retention time (2.3 and 4, respectively) were optimum with pH of 4.7 and 85.5% of acetonitrile for the chromatographic step. Mass spectrometry optimization step provided an increase of (±50%) in the average peak area with high signal-to-noise relationship for the analytes studied. The proposed extraction method was 70% more efficient than the initial method for all drugs analyzed.

Funder

CNPq

FACEPE

Publisher

Oxford University Press (OUP)

Subject

General Medicine,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3