On-Line Sorbentless Cryogenic Needle Trap and GC–FID Method for the Extraction and Analysis of Trace Volatile Organic Compounds from Soil Samples

Author:

Djozan Djavanshir1,Norouzi Jamal2,Farajzadeh Mir Ali1

Affiliation:

1. Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran

2. Department of Chemistry, Shabestar Branch, Islamic Azad University, Shabestar, Iran

Abstract

Abstract In this study, an automated sorbentless cryogenic needle trap device (ASCNTD) coupled with a gas chromatograph (GC) was developed with the aim of sampling, pre-concentration and determination of volatile organic compounds (VOCs) from soil sample. This paper describes optimization of relevant parameters, performance evaluation and an illustrative application of ASCNTD. The ASCNTD system consists of a 5 cm stainless steel needle passed through a hollow ceramic rod which is coiled with resistive nichrome wire. The set is placed in a PVC (Polyvinyl chloride) chamber through which liquid nitrogen can flow. The headspace components are circulated with a pump to pass through the needle, and this results in freeze-trapping of the VOCs on the inner surface of the needle. When extraction is completed, the analytes trapped in the inner wall of the needle were thermally desorbed and swept by the carrier gas into the GC capillary column. The parameters being effective on the extraction processes, namely headspace flow rate, the temperature and time of extraction and desorption were optimized and evaluated. The developed technique was compared to the headspace solid-phase microextraction method for the analysis of soil samples containing BTEX (Benzene, Toluene, Ethylbenzene and Xylene). The relative standard deviation values are below 8% and detection limits as low as 1.2 ng g−1 were obtained for BTEX by ASCNTD.

Funder

Islamic Azad University Shabestar

Publisher

Oxford University Press (OUP)

Subject

General Medicine,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3