The Synthesis of Molecularly Imprinted Polymers on Microcentrifuge Tube Filters for Solid-Phase Extraction and the HPLC-UV Determination of Andrographolides

Author:

Thongchai Wisanu1ORCID,Poolprasert Pisit1,Thongchai Suwanna2

Affiliation:

1. Faculty of Science and Technology, Pibulsongkram Rajabhat University, Phitsanulok 65000, Thailand

2. Thathong Pittayakom School, Phitsanulok 65000, Thailand

Abstract

Abstract Molecular imprinting-based solid-phase extraction has been in the spotlight to improve recognition selectivity and detection sensitivity of andrographolides. The synthesis of molecularly imprinted polymers on micro centrifuge tube filters for the extraction and the determination of andrographolides were investigated. Molecularly imprinted polymers were synthesized using the photo-polymerization method for the preconcentration of andrographolides (AD) template molecule using 2,2-dimethoxy-2-phenylacetophenone as initiators, the mixture of 1-dodecanol and toluene solvent, 2-hydroxyethyl methacrylate and ethylene glycol dimethacrylate as functional monomers and cross-linked, respectively. The resultant AD molecularly imprinted polymers (AD-MIPs) were characterized using the Fourier-transform infrared spectrum and scanning electron microscopy. The maximum adsorption of AD-MIPs toward the andrographolides was found to be 85%, and could reach binding equilibrium within 60 min. The sample solution was separated by AD-MIP using solid-phase extraction (SPE). Subsequently, the sample solution was analyzed by the high-performance liquid chromatography (HPLC) method. The AD-MIP could be successfully applied to specifically separate and determine the andrographolides from pharmaceutical products and biological fluid samples with relatively high recoveries (102.01–108.61%). The present method is simple, selective, accurate, and provides a promising alternative to traditional SPE sorbents for the extraction and determination of andrographolides in real samples and biological fluid samples.

Funder

Faculty of Science and Technology, Pibulsongkram Rajabhat University

Publisher

Oxford University Press (OUP)

Subject

General Medicine,Analytical Chemistry

Reference29 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3