Advances in Separation and Purification of Bioactive Polysaccharides through High-speed Counter-Current Chromatography

Author:

Yang Yu1,Khan Bilal Muhammad1,Zhang Xiping2,Zhao Yongjie2,Cheong Kit-Leong1,Liu Yang1

Affiliation:

1. Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Daxue Road, Jinping District, Shantou, Guangdong 515063, PR China

2. Department of Mechanical Engineering, College of Engineering, Shantou University, Daxue Road, Jinping District, Shantou, Guangdong 515063, P.R. China

Abstract

Abstract Polysaccharides, with an extensive distribution in natural products, represent a group of natural bioactive substances having widespread applications in health-care food products and as biomaterials. Devising an efficient system for the separation and purification of polysaccharides from natural sources, hence, is of utmost importance in the widespread applicability and feasibility of research for the development of polysaccharide-based products. High-speed counter-current chromatography (HSCCC) is a continuous liquid–liquid partitioning chromatography with the ability to support a high loading amount and crude material treatment. Due to its flexible two-phase solvent system, HSCCC has been successfully used in the separation of many natural products. Based on HSCCC unique advantages over general column chromatography and its enhanced superiority in this regard when coupled to aqueous two-phase system (ATPS), this review summarizes the separation and purification of various bioactive polysaccharides through HSCCC and its coupling to ATPS as an aid in future research in this direction.

Funder

National Natural Science Foundation of China

Educational Commission of Guangdong Province

Natural Science Foundation of Guangdong Province

Publisher

Oxford University Press (OUP)

Subject

General Medicine,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3