Chromatographic Fingerprint Analysis of Radix Hedysari Using Supercritical Fluid Chromatography Coupled with Diode Array Detector

Author:

Wang Bo12,Liu Xiaohua1,Xue Zhiyuan1,Yang Xiuyan1,Fang Yaoyao1,Zhao Lianggong3,Feng Shilan1

Affiliation:

1. School of Pharmacy, Lanzhou University, 199 Donggangxi Road, Lanzhou 730000, P. R China

2. Food Safety Testing Laboratory, Lanzhou CustomsTechnology Center, 2168 Nanhe Road, Lanzhou 730000, P. R China

3. Second Hospital, Lanzhou University, Chenguan District, Lanzhou 730000, P. R China

Abstract

AbstractA newly and rapid supercritical fluid chromatography method for the simultaneous determination of 11 active compounds in Radix Hedysari samples has been developed and validated. Optimum separation was achieved on a HSS SB C18 column with a gradient elution at a flow rate of 1.5 mL/min, back pressure of 11.03 Mpa and diode array detector at 260 nm. The results from the quantitative data showed that contents of these 11 active compounds were different from plant regions. Especially the contents of formononetin in the Minxian county are ~6-fold than in wild Radix Hedysari. The chromatographic fingerprint of Radix Hedysari was recorded under the same chromatographic condition. Data analytic procedure was performed to differentiate the 25 batches of Radix Hedysari samples. Data from chromatographic fingerprint were also analyzed using hierarchical cluster analysis. The results showed that 23 batches of Radix Hedysari samples had a high similarity (> 0.90) and overall 25 batches of sample were divided into two clusters. Moreover, according to the comparison contents of active compounds in each Radix Hedysari samples, the cultivated location of Radix Hedysari was successfully distinguished. This method presented good stability, repeatability and precision and would be a useful and reliable approach for the quality control of Radix Hedysari. Moreover, all target compounds were quantified by ultra-high performance liquid chromatography–time-of-flight mass spectrometry.

Funder

Key Laboratory of Traditional Chinese Medicine Quality and Standard

Scientific and Technological Projects of Lanzhou City

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

General Medicine,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3