Optimizing a linear ‘Doggybone’ DNA vaccine for influenza virus through the incorporation of DNA targeting sequences and neuraminidase antigen

Author:

Cunliffe Robert F1,Stirling David C1,Razzano Ilaria23,Murugaiah Valarmathy1,Montomoli Emanuele34,Kim Sungwon5,Wane Madina5,Horton Helen5,Caproni Lisa J5,Tregoning John S1ORCID

Affiliation:

1. Department of Infectious Disease, Imperial College London , London W2 1PG , UK

2. Department of Life Sciences, University of Siena , 53100 Siena , Italy

3. VisMederi srl , Siena, 53100 , Italia

4. Department of Molecular and Developmental Medicine, University of Siena , 53100 Siena , Italy

5. Touchlight Genetics Ltd , Hampton, TW12 2ER , UK

Abstract

Abstract Influenza virus represents a challenge for traditional vaccine approaches due to its seasonal changes and potential for zoonotic transmission. Nucleic acid vaccines can overcome some of these challenges, especially through the inclusion of multiple antigens to increase the breadth of response. RNA vaccines were an important part of the response to the COVID-19 pandemic, but for future outbreaks DNA vaccines may have some advantages in terms of stability and manufacturing cost that warrant continuing investigation to fully realize their potential. Here, we investigate influenza virus vaccines made using a closed linear DNA platform, Doggybone™ DNA (dbDNA), produced by a rapid and scalable cell-free method. Influenza vaccines have mostly focussed on Haemagglutinin (HA), but the inclusion of Neuraminidase (NA) may provide additional protection. Here, we explored the potential of including NA in a dbDNA vaccine, looking at DNA optimization, mechanism and breadth of protection. We showed that DNA targeting sequences (DTS) improved immune responses against HA but not NA. We explored whether NA vaccine-induced protection against influenza virus infection was cell-mediated, but depletion of CD8 and NK cells made no impact, suggesting it was antibody-mediated. This is reflected in the restriction of protection to homologous strains of influenza virus. Importantly, we saw that including both HA and NA in a single combined vaccine did not dampen the immune response to either one. Overall, we show that linear dbDNA can induce an immune response against NA, which may offer increased protection in instances of HA mismatch where NA remains more conserved.

Funder

Touchlight Genetics Ltd

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3