Affiliation:
1. Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine , Heath Park, Cardiff , UK
2. Immunocore , Abingdon , UK
Abstract
Abstract
The intracellular proteome of virtually every nucleated cell in the body is continuously presented at the cell surface via the human leukocyte antigen class I (HLA-I) antigen processing pathway. This pathway classically involves proteasomal degradation of intracellular proteins into short peptides that can be presented by HLA-I molecules for interrogation by T-cell receptors (TCRs) expressed on the surface of CD8+ T cells. During the initiation of a T-cell immune response, the TCR acts as the T cell’s primary sensor, using flexible loops to mould around the surface of the pHLA-I molecule to identify foreign or dysregulated antigens. Recent findings demonstrate that pHLA-I molecules can also be highly flexible and dynamic, altering their shape according to minor polymorphisms between different HLA-I alleles, or interactions with different peptides. These flexible presentation modes have important biological consequences that can, for example, explain why some HLA-I alleles offer greater protection against HIV, or why some cancer vaccine approaches have been ineffective. This review explores how these recent findings redefine the rules for peptide presentation by HLA-I molecules and extend our understanding of the molecular mechanisms that govern TCR-mediated antigen discrimination.
Funder
Wellcome Senior Investigator
Publisher
Oxford University Press (OUP)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献