Deciphering the relationship between temperature and immunity

Author:

Maloney Elizabeth12ORCID,Duffy Darragh1ORCID

Affiliation:

1. Translational Immunology Unit, Institut Pasteur, Université Paris Cité , Paris , France

2. Frontiers of Innovation in Research and Education PhD Program, LPI Doctoral School , Paris , France

Abstract

Summary Fever is a hallmark symptom of disease across the animal kingdom. Yet, despite the evidence linking temperature fluctuation and immune response, much remains to be discovered about the molecular mechanisms governing these interactions. In patients with rheumatoid arthritis, for instance, it is clinically accepted that joint temperature can predict disease progression. But it was only recently demonstrated that the mitochondria of stimulated T cells can rise to an extreme 50°C, potentially indicating a cellular source of these localized ‘fevers’. A challenge to dissecting these mechanisms is a bidirectional interplay between temperature and immunity. Heat shock response is found in virtually all organisms, activating protective pathways when cells are exposed to elevated temperatures. However, the temperature threshold that activates these pathways can vary within the same organism, with human immune cells, in particular, demonstrating differential sensitivity to heat. Such inter-cellular variation may be clinically relevant given the small but significant temperature differences seen between tissues, ages, and sexes. Greater understanding of how such small temperature perturbations mediate immune responses may provide new explanations for persistent questions in disease such as sex disparity in disease prevalence. Notably, the prevalence and severity of many maladies are rising with climate change, suggesting temperature fluctuations can interact with disease on multiple levels. As global temperatures are rising, and our body temperatures are falling, questions regarding temperature–immune interactions are increasingly critical. Here, we review this aspect of environmental interplay to better understand temperature’s role in immune variation and subsequent risk of disease.

Funder

Pasteur—Paris University

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3